Esempio n. 1
0
 def download_imagenet(self) -> str:
     filename = 'resnet-101.h5'
     resource = 'https://github.com/exemai/sf-retinanet/releases/download/0.0.1/resnet101-keras.h5'
     md5sum = '05dc86924389e5b401a9ea0348a3213c'
     model_path = get_file(filename,
                           resource,
                           cache_subdir='models',
                           md5_hash=md5sum)
     return model_path
Esempio n. 2
0
 def download_imagenet(self) -> str:
     filename = 'resnet-152.h5'
     resource = 'https://github.com/exemai/sf-retinanet/releases/download/0.0.1/resnet152-keras.h5'
     md5sum = '6ee11ef2b135592f8031058820bb9e71'
     model_path = get_file(filename,
                           resource,
                           cache_subdir='models',
                           md5_hash=md5sum)
     return model_path
Esempio n. 3
0
 def download_imagenet(self) -> str:
     filename = 'resnet-50.h5'
     resource = 'https://github.com/exemai/sf-retinanet/releases/download/0.0.1/resnet50-keras.h5'
     md5sum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
     model_path = get_file(filename,
                           resource,
                           cache_subdir='models',
                           md5_hash=md5sum)
     return model_path
Esempio n. 4
0
def download_imagenet(backbone):
    filename = resnet_filename.format(backbone[6:])
    resource = resnet_resource.format(backbone[6:])
    if backbone == 'resnet50':
        checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
    elif backbone == 'resnet101':
        checksum = '05dc86924389e5b401a9ea0348a3213c'
    elif backbone == 'resnet152':
        checksum = '6ee11ef2b135592f8031058820bb9e71'
    else:
        raise ValueError("Il backbone '{}' non è riconosciuto.".format(backbone))

    return imagenet_utils.get_file(
        filename,
        resource,
        cache_subdir='models',
        md5_hash=checksum
    )
Esempio n. 5
0
    def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        """
        resnet_filename = 'ResNet-{}-model.keras.h5'
        resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(
            resnet_filename)
        depth = int(self.backbone.replace('resnet', ''))

        filename = resnet_filename.format(depth)
        resource = resnet_resource.format(depth)
        if depth == 50:
            checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
        elif depth == 101:
            checksum = '05dc86924389e5b401a9ea0348a3213c'
        elif depth == 152:
            checksum = '6ee11ef2b135592f8031058820bb9e71'

        return imagenet_utils.get_file(filename,
                                       resource,
                                       cache_subdir='models',
                                       md5_hash=checksum)
Esempio n. 6
0
from keras_retinanet.models import ResNet50RetinaNet
from keras_retinanet.preprocessing import PascalVocIterator


def create_model():
	image = keras.layers.Input((512, 512, 3))
	im_info = keras.layers.Input((3,))
	gt_boxes = keras.layers.Input((None, 5))
	return ResNet50RetinaNet([image, im_info, gt_boxes])

if __name__=='__main__':
	# create the model
	model = create_model()

	# load pretrained weights
	weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af')
	model.load_weights(weights_path, by_name=True)

	# compile model (note: set loss to None since loss is added inside layer)
	model.compile(loss=None, optimizer='adam')

	# print model summary
	print(model.summary())

	# create an image data generator object
	image_data_generator = keras.preprocessing.image.ImageDataGenerator(
		rescale=1/255
	)

	# create a generator for training data
	train_generator = PascalVocIterator(
Esempio n. 7
0
def ResNet152(include_top=True,
              weights='imagenet',
              input_tensor=None,
              input_shape=None,
              pooling=None,
              classes=1000):
    """Instantiates the ResNet152 architecture.

        Optionally loads weights pre-trained
        on ImageNet. Note that when using TensorFlow,
        for best performance you should set
        `image_data_format='channels_last'` in your Keras config
        at ~/.keras/keras.json.

        The model and the weights are compatible with both
        TensorFlow and Theano. The data format
        convention used by the model is the one
        specified in your Keras config file.

        # Arguments
            include_top: whether to include the fully-connected
                layer at the top of the network.
            weights: one of `None` (random initialization),
                  'imagenet' (pre-training on ImageNet),
                  or the path to the weights file to be loaded.
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(224, 224, 3)` (with `channels_last` data format)
                or `(3, 224, 224)` (with `channels_first` data format).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 197.
                E.g. `(200, 200, 3)` would be one valid value.
            pooling: Optional pooling mode for feature extraction
                when `include_top` is `False`.
                - `None` means that the output of the model will be
                    the 4D tensor output of the
                    last convolutional layer.
                - `avg` means that global average pooling
                    will be applied to the output of the
                    last convolutional layer, and thus
                    the output of the model will be a 2D tensor.
                - `max` means that global max pooling will
                    be applied.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.

        # Returns
            A Keras model instance.

        # Raises
            ValueError: in case of invalid argument for `weights`,
                or invalid input shape.
    """
    WEIGHTS_PATH = None

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = Conv2D(64, (7, 7), strides=(2, 2), padding='same',
               name='conv1')(img_input)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPool2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    for i in range(1, 8):
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b' + str(i))

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    for i in range(1, 36):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b' + str(i))

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AvgPool2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAvgPool2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPool2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet152')

    # load weights
    if weights == 'imagenet':
        weights_path = get_file('resnet152_weights_tf.h5',
                                WEIGHTS_PATH,
                                cache_subdir='models')
        if include_top:
            model.load_weights(weights_path)
        else:
            f = h5py.File(weights_path)
            layer_names = [name for name in f.attrs['layer_names']]

            for i, layer in enumerate(model.layers):
                g = f[layer_names[i]]
                weights = [g[name] for name in g.attrs['weight_names']]
                layer.set_weights(weights)

        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

        if K.image_data_format() == 'channels_first' and K.backend(
        ) == 'tensorflow':
            warnings.warn('You are using the TensorFlow backend, yet you '
                          'are using the Theano '
                          'image data format convention '
                          '(`image_data_format="channels_first"`). '
                          'For best performance, set '
                          '`image_data_format="channels_last"` in '
                          'your Keras config '
                          'at ~/.keras/keras.json.')

    elif weights is not None:
        model.load_weights(weights)

    return model