Esempio n. 1
0
def load_mask(mask_path, shape, return_mask_img=False):
    if K.image_dim_ordering() == 'th':
        _, channels, width, height = shape
    else:
        _, width, height, channels = shape

    mask = imread(mask_path, mode="L")  # Grayscale mask load
    mask = imresize(mask, (width, height)).astype('float32')

    # Perform binarization of mask
    mask[mask <= 127] = 0
    mask[mask > 127] = 255

    max_val = np.amax(mask)
    mask /= max_val

    if return_mask_img:
        return mask

    mask_shape = shape[1:]
    mask_tensor = np.empty(mask_shape)

    for i in range(channels):
        if K.image_dim_ordering() == "th":
            mask_tensor[i, :, :] = mask
        else:
            mask_tensor[:, :, i] = mask

    return mask_tensor
Esempio n. 2
0
def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_dim_ordering() == 'th':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features - 1, K.transpose(features - 1))
    return gram
Esempio n. 3
0
def eval_loss_and_grads(x):
    if K.image_dim_ordering() == 'th':
        x = x.reshape((1, 3, img_width, img_height))
    else:
        x = x.reshape((1, img_width, img_height, 3))

    outs = f_outputs([x])
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values
Esempio n. 4
0
def total_variation_loss(x):
    assert K.ndim(x) == 4
    if K.image_dim_ordering() == 'th':
        a = K.square(x[:, :, :img_width - 1, :img_height - 1] -
                     x[:, :, 1:, :img_height - 1])
        b = K.square(x[:, :, :img_width - 1, :img_height - 1] -
                     x[:, :, :img_width - 1, 1:])
    else:
        a = K.square(x[:, :img_width - 1, :img_height - 1, :] -
                     x[:, 1:, :img_height - 1, :])
        b = K.square(x[:, :img_width - 1, :img_height - 1, :] -
                     x[:, :img_width - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))
Esempio n. 5
0
def content_loss(base, combination):
    channel_dim = 0 if K.image_dim_ordering() == 'th' else -1

    channels = K.shape(base)[channel_dim]
    size = img_width * img_height

    if args.content_loss_type == 1:
        multiplier = 1 / (2.0 * (channels**0.5) * (size**0.5))
    elif args.content_loss_type == 2:
        multiplier = 1 / (channels * size)
    else:
        multiplier = 1.0

    return multiplier * K.sum(K.square(combination - base))
Esempio n. 6
0
def deprocess_image(x):
    """
    Convert a tensor back to a valid image.
    """
    if K.image_dim_ordering() == 'th':
        x = x.reshape((3, img_width, img_height))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_width, img_height, 3))

    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68

    # BGR => RGB
    x = x[:, :, ::-1]

    x = np.clip(x, 0, 255).astype('uint8')
    return x
Esempio n. 7
0
    def deprocess_image(self, x):
        '''
        Same normalization as in:
        https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
        '''
        if np.ndim(x) > 3:
            x = np.squeeze(x)
        # normalize tensor: center on 0., ensure std is 0.1
        x -= x.mean()
        x /= (x.std() + 1e-5)
        x *= 0.1

        # clip to [0, 1]
        x += 0.5
        x = np.clip(x, 0, 1)

        # convert to RGB array
        x *= 255
        if KTF.image_dim_ordering() == 'th':
            x = x.transpose((1, 2, 0))
        # 0~255に正規化    
        x = np.clip(x, 0, 255).astype('uint8')
        return x
Esempio n. 8
0
def preprocess_image(image_path, load_dims=False, read_mode="color"):
    global img_width, img_height, img_WIDTH, img_HEIGHT, aspect_ratio

    mode = "RGB" if read_mode == 'color' else "L"
    img = imread(image_path, mode=mode)

    if mode == 'L':
        # expand the 1 channel grayscale to 3 channel grayscale image
        temp = np.zeros(img.shape + (3, ), dtype=np.uint8)
        temp[:, :, 0] = img
        temp[:, :, 1] = img
        temp[:, :, 2] = img
        img = temp

    if load_dims:
        img_WIDTH = img.shape[0]
        img_HEIGHT = img.shape[1]
        aspect_ratio = float(img_HEIGHT) / img_WIDTH

        img_width = args.img_size
        if maintain_aspect_ratio:
            img_height = int(img_width * aspect_ratio)
        else:
            img_height = args.img_size

    img = imresize(img, (img_width, img_height)).astype('float32')

    # RGB -> BGR
    img = img[:, :, ::-1]
    img[:, :, 0] -= 103.939
    img[:, :, 1] -= 116.779
    img[:, :, 2] -= 123.68

    if K.image_dim_ordering() == 'th':
        img = img.transpose((2, 0, 1)).astype('float32')
    img = np.expand_dims(img, axis=0)
    return img
Esempio n. 9
0
def pooling_func(x):
    if pooltype == 1:
        return AveragePooling2D((2, 2), strides=(2, 2))(x)
    else:
        return MaxPooling2D((2, 2), strides=(2, 2))(x)


# get tensor representation of base image
base_image = K.variable(
    preprocess_image(base_image_path, True, read_mode=read_mode))
style_reference_images = []
for style_path in style_image_paths:
    style_reference_images.append(K.variable(preprocess_image(style_path)))

# this will contain our generated image
if K.image_dim_ordering() == 'th':
    combination_image = K.placeholder((1, 3, img_width, img_height))
else:
    combination_image = K.placeholder((1, img_width, img_height, 3))

image_tensor = [base_image]
for style_image_tensor in style_reference_images:
    image_tensor.append(style_image_tensor)
image_tensor.append(combination_image)

nb_tensors = len(image_tensor)
nb_style_images = nb_tensors - 2  # Content andoutput image not considered

# combine the various image into a single Keras tensor
input_tensor = K.concatenate(image_tensor, axis=0)