Esempio n. 1
0
    def nn_loss(self, reference, target, neighborhood_size=(3, 3)):
        v_pad = neighborhood_size[0] // 2
        h_pad = neighborhood_size[1] // 2
        val_pad = ktf.pad(reference,
                          [[0, 0], [v_pad, v_pad], [h_pad, h_pad], [0, 0]],
                          mode='CONSTANT',
                          constant_values=-10000)

        reference_tensors = []
        for i_begin in range(0, neighborhood_size[0]):
            i_end = i_begin - neighborhood_size[0] + 1
            i_end = None if i_end == 0 else i_end
            for j_begin in range(0, neighborhood_size[1]):
                j_end = j_begin - neighborhood_size[0] + 1
                j_end = None if j_end == 0 else j_end
                sub_tensor = val_pad[:, i_begin:i_end, j_begin:j_end, :]
                reference_tensors.append(ktf.expand_dims(sub_tensor, -1))
        reference = ktf.concat(reference_tensors, axis=-1)
        target = ktf.expand_dims(target, axis=-1)

        abs = ktf.abs(reference - target)
        norms = ktf.reduce_sum(abs, reduction_indices=[-2])
        loss = ktf.reduce_min(norms, reduction_indices=[-1])

        return loss
Esempio n. 2
0
def _upsampled_registration(target_image, src_image, upsample_factor):

    upsample_factor = tf.constant(upsample_factor, tf.float32)

    target_shape = tf.shape(target_image)
    target_image = tf.reshape(target_image, target_shape[:3])
    src_shape = tf.shape(src_image)
    src_image = tf.reshape(src_image, src_shape[:3])

    src_freq = fft2d(src_image)
    target_freq = fft2d(target_image)

    shape = tf.reshape(tf.shape(src_freq)[1:3], (1, 2))
    shape = tf.cast(shape, tf.float32)
    shape = tf.tile(shape, (tf.shape(target_freq)[0], 1))
    image_product = src_freq * tf.conj(target_freq)
    cross_correlation = tf.spectral.ifft2d(image_product)

    maxima = find_maxima(tf.abs(cross_correlation))
    midpoints = fix(tf.cast(shape, tf.float32) / 2.)

    shifts = maxima
    shifts = tf.where(shifts > midpoints, shifts - shape, shifts)
    shifts = tf.round(shifts * upsample_factor) / upsample_factor

    upsampled_region_size = tf.ceil(upsample_factor * 1.5)
    dftshift = fix(upsampled_region_size / 2.0)
    normalization = tf.cast(tf.size(src_freq[0]), tf.float32)
    normalization *= upsample_factor**2
    sample_region_offset = dftshift - shifts * upsample_factor

    data = tf.conj(image_product)
    upsampled_dft = _upsampled_dft(data, upsampled_region_size,
                                   upsample_factor, sample_region_offset)

    cross_correlation = tf.conj(upsampled_dft)
    cross_correlation /= tf.cast(normalization, tf.complex64)
    cross_correlation = tf.abs(cross_correlation)

    maxima = find_maxima(cross_correlation)
    maxima = maxima - dftshift
    shifts = shifts + maxima / upsample_factor

    return shifts
Esempio n. 3
0
def radon_fft(x):
    x_shape = tf.shape(x)
    n_angles = x_shape[1]
    n_cols = x_shape[2]
    x = tf.reshape(x, (-1, n_cols))
    x = tf.cast(x, tf.complex64)
    x = tf.spectral.fft(x)
    x = tf.abs(x)
    x = tf.reshape(x, (-1, n_angles, n_cols, 1))
    return x