Esempio n. 1
0
    def call(self, inputs):
        if self.data_format == 'channels_last':
            out = ktf.pad(inputs, [[0, 0]] + self.paddings + [[0, 0]],
                          mode='REFLECT')
        else:
            out = ktf.pad(inputs, [[0, 0], [0, 0]] + self.paddings,
                          mode='REFLECT')

        return out
Esempio n. 2
0
def _find_subpixel_maxima(x,
                          kernel_size,
                          sigma,
                          upsample_factor,
                          coordinate_scale=1,
                          confidence_scale=255.):

    kernel = gaussian_kernel_2d(kernel_size, sigma)
    kernel = tf.expand_dims(kernel, 0)

    x_shape = tf.shape(x)
    rows = x_shape[1]
    cols = x_shape[2]

    max_vals = tf.reduce_max(tf.reshape(x, [-1, rows * cols]), axis=1)
    max_vals = tf.reshape(max_vals, [-1, 1]) / confidence_scale

    row_pad = rows // 2 - kernel_size // 2
    col_pad = cols // 2 - kernel_size // 2
    padding = [[0, 0], [row_pad, row_pad - 1], [col_pad, col_pad - 1]]
    kernel = tf.pad(kernel, padding)

    row_center = row_pad + (kernel_size // 2)
    col_center = col_pad + (kernel_size // 2)
    center = tf.stack([row_center, col_center])
    center = tf.expand_dims(center, 0)
    center = tf.cast(center, dtype=tf.float32)

    shifts = _upsampled_registration(x, kernel, upsample_factor)
    shifts = center - shifts
    shifts *= coordinate_scale
    maxima = tf.concat([shifts[:, ::-1], max_vals], -1)

    return maxima
Esempio n. 3
0
    def nn_loss(self, reference, target, neighborhood_size=(3, 3)):
        v_pad = neighborhood_size[0] // 2
        h_pad = neighborhood_size[1] // 2
        val_pad = ktf.pad(reference,
                          [[0, 0], [v_pad, v_pad], [h_pad, h_pad], [0, 0]],
                          mode='CONSTANT',
                          constant_values=-10000)

        reference_tensors = []
        for i_begin in range(0, neighborhood_size[0]):
            i_end = i_begin - neighborhood_size[0] + 1
            i_end = None if i_end == 0 else i_end
            for j_begin in range(0, neighborhood_size[1]):
                j_end = j_begin - neighborhood_size[0] + 1
                j_end = None if j_end == 0 else j_end
                sub_tensor = val_pad[:, i_begin:i_end, j_begin:j_end, :]
                reference_tensors.append(ktf.expand_dims(sub_tensor, -1))
        reference = ktf.concat(reference_tensors, axis=-1)
        target = ktf.expand_dims(target, axis=-1)

        abs = ktf.abs(reference - target)
        norms = ktf.reduce_sum(abs, reduction_indices=[-2])
        loss = ktf.reduce_min(norms, reduction_indices=[-1])

        return loss