Esempio n. 1
0
    def get_output(self, train=False):
        # input shape: (nb_samples, time (padded with zeros), input_dim)
        X = self.get_input(train)
        self.h_t = X[1]
        
        self.h_s = X[0]
        if self.feed_state:        
            self.h_init = X[2]

        self.P_j = K.dot(self.h_s, self.W_s)
        
        if self.stateful and not train:
            initial_states = self.states
        else:
            initial_states = self.get_initial_states(self.h_s)
            if self.feed_state:
                initial_states[0] =  self.h_init

        last_output, outputs, states = K.rnn(self.step, self.h_t, initial_states)
        
        if self.stateful:
            self.updates = []
            for i in range(len(states)):
                self.updates.append((self.states[i], states[i]))

        if self.return_sequences:
            return outputs
        else:
            return last_output
Esempio n. 2
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]

            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        inputs = KTH.variable(input_val)
        initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn,
                                                   inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        inputs = KTF.variable(input_val)
        initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn,
                                                   inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)
Esempio n. 3
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]
            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        inputs = KTH.variable(input_val)
        initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   masking=False)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        inputs = KTF.variable(input_val)
        initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, inputs,
                                                   initial_states,
                                                   go_backwards=False,
                                                   masking=False)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)
Esempio n. 4
0
    def test_rnn_no_states(self):
        # implement a simple RNN without states
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        W_i_val = np.random.random((input_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)

            def step_function(x, states):
                assert len(states) == 0
                output = K.dot(x, W_i)
                return output, []

            return step_function

        # test default setup
        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = []
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn,
                                                   th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 0

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = []
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn,
                                                   tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 0

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
Esempio n. 5
0
    def test_rnn_no_states(self):
        # implement a simple RNN without states
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        W_i_val = np.random.random((input_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)

            def step_function(x, states):
                assert len(states) == 0
                output = K.dot(x, W_i)
                return output, []
            return step_function

        # test default setup
        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = []
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 0

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = []
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 0

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
Esempio n. 6
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]
            return step_function

        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn, th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn, tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)

        # test unroll
        unrolled_last_output, unrolled_outputs, unrolled_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=None,
            unroll=True,
            input_length=timesteps)

        unrolled_th_last_output = KTH.eval(unrolled_last_output)
        unrolled_th_outputs = KTH.eval(unrolled_outputs)
        assert len(unrolled_new_states) == 1
        unrolled_th_state = KTH.eval(unrolled_new_states[0])
        assert_allclose(th_last_output, unrolled_th_last_output, atol=1e-04)
        assert_allclose(th_outputs, unrolled_th_outputs, atol=1e-04)
        assert_allclose(th_state, unrolled_th_state, atol=1e-04)

        # test unroll with backwards = True
        bwd_last_output, bwd_outputs, bwd_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None)
        bwd_th_last_output = KTH.eval(bwd_last_output)
        bwd_th_outputs = KTH.eval(bwd_outputs)
        assert len(bwd_new_states) == 1
        bwd_th_state = KTH.eval(bwd_new_states[0])

        bwd_unrolled_last_output, bwd_unrolled_outputs, bwd_unrolled_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None,
            unroll=True,
            input_length=timesteps)

        bwd_unrolled_th_last_output = KTH.eval(bwd_unrolled_last_output)
        bwd_unrolled_th_outputs = KTH.eval(bwd_unrolled_outputs)
        assert len(bwd_unrolled_new_states) == 1
        bwd_unrolled_th_state = KTH.eval(bwd_unrolled_new_states[0])
        assert_allclose(bwd_th_last_output, bwd_unrolled_th_last_output, atol=1e-04)
        assert_allclose(bwd_th_outputs, bwd_unrolled_th_outputs, atol=1e-04)
        assert_allclose(bwd_th_state, bwd_unrolled_th_state, atol=1e-04)

        # test unroll with masking
        np_mask = np.random.randint(2, size=(32, timesteps))
        th_mask = KTH.variable(np_mask)

        masked_last_output, masked_outputs, masked_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask)
        masked_th_last_output = KTH.eval(masked_last_output)
        masked_th_outputs = KTH.eval(masked_outputs)
        assert len(masked_new_states) == 1
        masked_th_state = KTH.eval(masked_new_states[0])

        unrolled_masked_last_output, unrolled_masked_outputs, unrolled_masked_new_states = KTH.rnn(
            th_rnn_step_fn, th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask,
            unroll=True,
            input_length=timesteps)
        unrolled_masked_th_last_output = KTH.eval(unrolled_masked_last_output)
        unrolled_masked_th_outputs = KTH.eval(unrolled_masked_outputs)
        assert len(unrolled_masked_new_states) == 1
        unrolled_masked_th_state = KTH.eval(unrolled_masked_new_states[0])

        assert_allclose(unrolled_masked_th_last_output, masked_th_last_output, atol=1e-04)
        assert_allclose(unrolled_masked_th_outputs, masked_th_outputs, atol=1e-04)
        assert_allclose(unrolled_masked_th_state, masked_th_state, atol=1e-04)
Esempio n. 7
0
    def test_rnn(self):
        # implement a simple RNN
        input_dim = 8
        output_dim = 4
        timesteps = 5

        input_val = np.random.random((32, timesteps, input_dim))
        init_state_val = np.random.random((32, output_dim))
        W_i_val = np.random.random((input_dim, output_dim))
        W_o_val = np.random.random((output_dim, output_dim))

        def rnn_step_fn(input_dim, output_dim, K):
            W_i = K.variable(W_i_val)
            W_o = K.variable(W_o_val)

            def step_function(x, states):
                assert len(states) == 1
                prev_output = states[0]
                output = K.dot(x, W_i) + K.dot(prev_output, W_o)
                return output, [output]

            return step_function

        # test default setup
        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn,
                                                   th_inputs,
                                                   th_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn,
                                                   tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=False,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)

        # test unroll
        unrolled_last_output, unrolled_outputs, unrolled_new_states = KTH.rnn(
            th_rnn_step_fn,
            th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=None,
            unroll=True,
            input_length=timesteps)

        unrolled_th_last_output = KTH.eval(unrolled_last_output)
        unrolled_th_outputs = KTH.eval(unrolled_outputs)
        assert len(unrolled_new_states) == 1
        unrolled_th_state = KTH.eval(unrolled_new_states[0])
        assert_allclose(th_last_output, unrolled_th_last_output, atol=1e-04)
        assert_allclose(th_outputs, unrolled_th_outputs, atol=1e-04)
        assert_allclose(th_state, unrolled_th_state, atol=1e-04)

        # test go_backwards
        th_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTH)
        th_inputs = KTH.variable(input_val)
        th_initial_states = [KTH.variable(init_state_val)]
        last_output, outputs, new_states = KTH.rnn(th_rnn_step_fn,
                                                   th_inputs,
                                                   th_initial_states,
                                                   go_backwards=True,
                                                   mask=None)
        th_last_output = KTH.eval(last_output)
        th_outputs = KTH.eval(outputs)
        assert len(new_states) == 1
        th_state = KTH.eval(new_states[0])

        tf_rnn_step_fn = rnn_step_fn(input_dim, output_dim, KTF)
        tf_inputs = KTF.variable(input_val)
        tf_initial_states = [KTF.variable(init_state_val)]
        last_output, outputs, new_states = KTF.rnn(tf_rnn_step_fn,
                                                   tf_inputs,
                                                   tf_initial_states,
                                                   go_backwards=True,
                                                   mask=None)
        tf_last_output = KTF.eval(last_output)
        tf_outputs = KTF.eval(outputs)
        assert len(new_states) == 1
        tf_state = KTF.eval(new_states[0])

        assert_allclose(tf_last_output, th_last_output, atol=1e-04)
        assert_allclose(tf_outputs, th_outputs, atol=1e-04)
        assert_allclose(tf_state, th_state, atol=1e-04)

        # test unroll with backwards = True
        bwd_last_output, bwd_outputs, bwd_new_states = KTH.rnn(
            th_rnn_step_fn,
            th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None)
        bwd_th_last_output = KTH.eval(bwd_last_output)
        bwd_th_outputs = KTH.eval(bwd_outputs)
        assert len(bwd_new_states) == 1
        bwd_th_state = KTH.eval(bwd_new_states[0])

        bwd_unrolled_last_output, bwd_unrolled_outputs, bwd_unrolled_new_states = KTH.rnn(
            th_rnn_step_fn,
            th_inputs,
            th_initial_states,
            go_backwards=True,
            mask=None,
            unroll=True,
            input_length=timesteps)

        bwd_unrolled_th_last_output = KTH.eval(bwd_unrolled_last_output)
        bwd_unrolled_th_outputs = KTH.eval(bwd_unrolled_outputs)
        assert len(bwd_unrolled_new_states) == 1
        bwd_unrolled_th_state = KTH.eval(bwd_unrolled_new_states[0])
        assert_allclose(bwd_th_last_output,
                        bwd_unrolled_th_last_output,
                        atol=1e-04)
        assert_allclose(bwd_th_outputs, bwd_unrolled_th_outputs, atol=1e-04)
        assert_allclose(bwd_th_state, bwd_unrolled_th_state, atol=1e-04)

        # test unroll with masking
        np_mask = np.random.randint(2, size=(32, timesteps))
        th_mask = KTH.variable(np_mask)

        masked_last_output, masked_outputs, masked_new_states = KTH.rnn(
            th_rnn_step_fn,
            th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask)
        masked_th_last_output = KTH.eval(masked_last_output)
        masked_th_outputs = KTH.eval(masked_outputs)
        assert len(masked_new_states) == 1
        masked_th_state = KTH.eval(masked_new_states[0])

        unrolled_masked_last_output, unrolled_masked_outputs, unrolled_masked_new_states = KTH.rnn(
            th_rnn_step_fn,
            th_inputs,
            th_initial_states,
            go_backwards=False,
            mask=th_mask,
            unroll=True,
            input_length=timesteps)
        unrolled_masked_th_last_output = KTH.eval(unrolled_masked_last_output)
        unrolled_masked_th_outputs = KTH.eval(unrolled_masked_outputs)
        assert len(unrolled_masked_new_states) == 1
        unrolled_masked_th_state = KTH.eval(unrolled_masked_new_states[0])

        assert_allclose(unrolled_masked_th_last_output,
                        masked_th_last_output,
                        atol=1e-04)
        assert_allclose(unrolled_masked_th_outputs,
                        masked_th_outputs,
                        atol=1e-04)
        assert_allclose(unrolled_masked_th_state, masked_th_state, atol=1e-04)