Esempio n. 1
0
def test_warnings():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    with pytest.warns(Warning) as w:
        out = model.fit_generator(gen_data(4), steps_per_epoch=10, use_multiprocessing=True, workers=2)
    warning_raised = any(['Sequence' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when using generator with processes.'

    with pytest.warns(None) as w:
        out = model.fit_generator(RandomSequence(3), steps_per_epoch=4, use_multiprocessing=True, workers=2)
    assert all(['Sequence' not in str(w_.message) for w_ in w]), 'A warning was raised for Sequence.'
Esempio n. 2
0
def run_parallel_test(data_generator):
    a = Input(shape=(3, ), name='input_a')
    b = Input(shape=(3, ), name='input_b')
    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)
    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model = Model([a, b], [a_2, b_2])
    model = make_parallel(model, 2)
    model.compile(optimizer,
                  loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    trained_epochs = []
    tracker_cb = LambdaCallback(
        on_epoch_begin=lambda epoch, logs: trained_epochs.append(epoch))
    model.fit_generator(data_generator(4),
                        steps_per_epoch=3,
                        epochs=5,
                        initial_epoch=2,
                        callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]
Esempio n. 3
0
def test_warnings():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    with pytest.warns(Warning) as w:
        out = model.fit_generator(gen_data(4), steps_per_epoch=10, use_multiprocessing=True, workers=2)
    warning_raised = any(['Sequence' in str(w_.message) for w_ in w])
    assert warning_raised, 'No warning raised when using generator with processes.'

    with pytest.warns(None) as w:
        out = model.fit_generator(RandomSequence(3), steps_per_epoch=4, use_multiprocessing=True, workers=2)
    assert all(['Sequence' not in str(w_.message) for w_ in w]), 'A warning was raised for Sequence.'
Esempio n. 4
0
def train(model: Model, batch_size, ep, n_of_run=1):
    train_samples = len(get_files_list(train_path_X))
    valid_samples = len(get_files_list(valid_path_X))
    model.fit_generator(generator=imageLoader(train_path_X, train_path_Y, batch_size=batch_size)
                        , validation_data=imageLoader(valid_path_X, valid_path_Y, batch_size=batch_size)
                        , steps_per_epoch=int(train_samples / batch_size)
                        , validation_steps=int(valid_samples / batch_size),
                        epochs=ep, callbacks=[hist])
    model.save_weights(str(blocks) + 'model' + str(n_of_run) + '.h5')
    # randomly shift images vertically (fraction of total height)
    height_shift_range=0.1,
    shear_range=0.1,  # set range for random shear
    zoom_range=0.2,  # set range for random zoom
    channel_shift_range=0.,  # set range for random channel shifts
    # set mode for filling points outside the input boundaries
    fill_mode='nearest',
    cval=0.,  # value used for fill_mode = "constant"
    horizontal_flip=True,  # randomly flip images
    vertical_flip=False,  # randomly flip images
    # set rescaling factor (applied before any other transformation)
    rescale=None,
    # set function that will be applied on each input
    preprocessing_function=None,
    # image data format, either "channels_first" or "channels_last"
    data_format=None)

datagen.fit(x_train)

callbacks = [
    ModelCheckpoint(
        filepath=
        "./teacher_models/teacher_model_epoch_{epoch:02d}-val_acc_{val_acc}.hdf5"
    )
]
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
                    epochs=epochs,
                    validation_data=(x_test, y_test),
                    workers=4,
                    callbacks=callbacks)
Esempio n. 6
0
def test_model_methods():
    a = Input(shape=(3, ), name='input_a')
    b = Input(shape=(3, ), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np],
                             [output_a_np, output_b_np])

    model.compile(optimizer,
                  loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # test fit
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    epochs=1,
                    batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_data=([input_a_np,
                                      input_b_np], [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, {
                        'dense_1': output_a_np,
                        'dropout': output_b_np
                    }))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    })

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10, ))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'], sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []
    trained_batches = []

    # define tracer callback
    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)

    def on_batch_begin(batch, logs):
        trained_batches.append(batch)

    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin,
                                on_batch_begin=on_batch_begin)

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=5,
                    batch_size=4,
                    initial_epoch=2,
                    callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([
                np.random.random((batch_sz, 3)),
                np.random.random((batch_sz, 3))
            ], [
                np.random.random((batch_sz, 4)),
                np.random.random((batch_sz, 3))
            ])

    out = model.fit_generator(gen_data(4),
                              steps_per_epoch=3,
                              epochs=5,
                              initial_epoch=2,
                              callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse], sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    batch_size=4,
                    epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # empty batch
    with pytest.raises(ValueError):

        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))

        out = model.evaluate_generator(gen_data(), steps=1)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch(
            [input_a_np, input_b_np], [output_a_np, output_b_np],
            sample_weight=[sample_weight[1], sample_weight[1][:2]])

    # `sample_weight` is neither a dict nor a list.
    with pytest.raises(TypeError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=tuple(sample_weight))

    # `validation_data` is neither a tuple nor a triple.
    with pytest.raises(ValueError):
        out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                        epochs=1,
                        batch_size=4,
                        validation_data=([input_a_np, input_b_np], ))

    # `loss` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=['mse', 'mae', 'mape'])

    # `loss_weights` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights={'lstm': 0.5})

    # `loss_weights` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights=[0.5])

    # `loss_weights` is invalid type.
    with pytest.raises(TypeError):
        model.compile(optimizer, loss='mse', loss_weights=(0.5, 0.5))

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer,
                      loss='mse',
                      sample_weight_mode={'lstm': 'temporal'})

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode=['temporal'])

    # `sample_weight_mode` matches output_names partially.
    with pytest.raises(ValueError):
        model.compile(optimizer,
                      loss='mse',
                      sample_weight_mode={'dense_1': 'temporal'})

    # `loss` does not exist.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=[])

    model.compile(optimizer, loss=['mse', 'mae'])
    model.compile(optimizer,
                  loss='mse',
                  loss_weights={
                      'dense_1': 0.2,
                      'dropout': 0.8
                  })
    model.compile(optimizer, loss='mse', loss_weights=[0.2, 0.8])

    # the rank of weight arrays should be 1.
    with pytest.raises(ValueError):
        out = model.train_on_batch(
            [input_a_np, input_b_np], [output_a_np, output_b_np],
            sample_weight=[None, np.random.random((10, 20, 30))])

    model.compile(optimizer,
                  loss='mse',
                  sample_weight_mode={
                      'dense_1': None,
                      'dropout': 'temporal'
                  })
    model.compile(optimizer, loss='mse', sample_weight_mode=[None, 'temporal'])

    # the rank of output arrays should be at least 3D.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)

    model.compile(optimizer,
                  loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)
    trained_epochs = []
    trained_batches = []
    out = model.fit_generator(generator=RandomSequence(3),
                              steps_per_epoch=3,
                              epochs=5,
                              initial_epoch=0,
                              validation_data=RandomSequence(4),
                              validation_steps=3,
                              callbacks=[tracker_cb])
    assert trained_epochs == [0, 1, 2, 3, 4]
    assert trained_batches == list(range(3)) * 5

    # steps_per_epoch will be equal to len of sequence if it's unspecified
    trained_epochs = []
    trained_batches = []
    out = model.fit_generator(generator=RandomSequence(3),
                              epochs=5,
                              initial_epoch=0,
                              validation_data=RandomSequence(4),
                              callbacks=[tracker_cb])
    assert trained_epochs == [0, 1, 2, 3, 4]
    assert trained_batches == list(range(12)) * 5

    # fit_generator will throw an exception if steps is unspecified for regular generator
    with pytest.raises(ValueError):

        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))

        out = model.fit_generator(generator=gen_data(),
                                  epochs=5,
                                  initial_epoch=0,
                                  validation_data=gen_data(),
                                  callbacks=[tracker_cb])

    # predict_generator output shape behavior should be consistent
    def expected_shape(batch_size, n_batches):
        return (batch_size * n_batches, 4), (batch_size * n_batches, 3)

    # Multiple outputs and one step.
    batch_size = 5
    sequence_length = 1
    shape_0, shape_1 = expected_shape(batch_size, sequence_length)
    out = model.predict_generator(
        RandomSequence(batch_size, sequence_length=sequence_length))
    assert np.shape(out[0]) == shape_0 and np.shape(out[1]) == shape_1

    # Multiple outputs and multiple steps.
    batch_size = 5
    sequence_length = 2
    shape_0, shape_1 = expected_shape(batch_size, sequence_length)
    out = model.predict_generator(
        RandomSequence(batch_size, sequence_length=sequence_length))
    assert np.shape(out[0]) == shape_0 and np.shape(out[1]) == shape_1

    # Create a model with a single output.
    single_output_model = Model([a, b], a_2)
    single_output_model.compile(optimizer,
                                loss,
                                metrics=[],
                                sample_weight_mode=None)

    # Single output and one step.
    batch_size = 5
    sequence_length = 1
    shape_0, _ = expected_shape(batch_size, sequence_length)
    out = single_output_model.predict_generator(
        RandomSequence(batch_size, sequence_length=sequence_length))
    assert np.shape(out) == shape_0

    # Single output and multiple steps.
    batch_size = 5
    sequence_length = 2
    shape_0, _ = expected_shape(batch_size, sequence_length)
    out = single_output_model.predict_generator(
        RandomSequence(batch_size, sequence_length=sequence_length))
    assert np.shape(out) == shape_0
Esempio n. 7
0
"""
datagen_for_validation = ImageDataGenerator(
    zca_whitening=True,  # apply ZCA whitening
    zca_epsilon=1e-06  # epsilon for ZCA whitening
)

# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).

datagen_for_validation.fit(x_test)
"""
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
                    epochs=epochs,
                    callbacks=[lr_cb],
                    validation_data=(x_test, y_test, batch_size),
                    validation_steps=100,
                    verbose=1)

# Save model and weights
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)

# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
Esempio n. 8
0
class TL(Model):
    """
    Triplet-Loss trained Neural Network.

    https://arxiv.org/abs/1503.03832
    """
    def __init__(self, base=None, siamese=None):
        super(TL, self).__init__()

        # Store the base model.
        assert (base != None)
        self.base = base

        # For loading.
        if base != None and siamese != None:
            self.base = base
            self.siamese = siamese
            self.latent_dim = self.base.outputs[0].shape[1]
            return

        # Get the latent dimension.
        assert len(self.base.outputs) == 1
        assert len(self.base.outputs[0].shape) == 2
        self.latent_dim = self.base.outputs[0].shape[1]

        # Get the input shape.
        input_shape = self.base.inputs[0].shape.as_list()[1:]

        # Create the anchor.
        input_anchor = layers.Input(shape=input_shape)
        output_anchor = input_anchor
        output_anchor = self.base(output_anchor)

        # Create the positive.
        input_positive = layers.Input(shape=input_shape)
        output_positive = input_positive
        output_positive = self.base(output_positive)

        # Create the negative.
        input_negative = layers.Input(shape=input_shape)
        output_negative = input_negative
        output_negative = self.base(output_negative)

        # Create a dummy output.
        output = layers.concatenate(
            [output_anchor, output_positive, output_negative])

        # Create the model.
        self.siamese = Model([input_anchor, input_positive, input_negative],
                             output,
                             name="triplet_model")

    def compile(self,
                optimizer,
                loss=None,
                metrics=None,
                loss_weights=None,
                sample_weight_mode=None,
                weighted_metrics=None,
                target_tensors=None,
                triplet_loss="mse",
                **kwargs):
        """
        Compiles the TL.

        Additionally to the default functionality of *compile*, it adds the triplet-loss.
        In order to do so you have to provide it via the parameter *triplet_loss*.

        The VAE loss is similar to

        >>> vae_loss = max(0.0, pos_dist - neg_dist + alpha)

        See the literature for details.

        Additional args:
            triplet_loss (string): The base-loss for the triplet-loss. Values are either *euclidean* for euclidean norm or *cosine* for cosine similarity.

        """
        assert loss == None, "Not expected to provide an explicit loss for TL. Use 'triplet_loss'"

        self.triplet_loss = triplet_loss

        def triplet_loss_function(y_true, y_pred, alpha=0.4):

            anchor = y_pred[:, 0:self.latent_dim]
            positive = y_pred[:, self.latent_dim:self.latent_dim * 2]
            negative = y_pred[:, self.latent_dim * 2:self.latent_dim * 3]

            if triplet_loss == "euclidean":
                pos_dist = euclidean_loss(positive, anchor)
                neg_dist = euclidean_loss(negative, anchor)
            elif triplet_loss == "cosine":
                pos_dist = cosine_loss(positive, anchor)
                neg_dist = cosine_loss(negative, anchor)
            else:
                raise Exception("Unexpected: " + triplet_loss)

            basic_loss = pos_dist - neg_dist + alpha
            loss = K.maximum(basic_loss, 0.0)
            return loss

        loss = triplet_loss_function

        self.siamese.compile(optimizer, loss, metrics, loss_weights,
                             sample_weight_mode, weighted_metrics, **kwargs)

    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            minibatch_size=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_split=0.,
            validation_data=None,
            shuffle=True,
            class_weight=None,
            sample_weight=None,
            initial_epoch=0,
            steps_per_epoch=None,
            validation_steps=None,
            **kwargs):
        """
        This is basically the same as in vanilla Keras.

        Additional args:
            minibatch_size (int): The model internally does some sampling. The *minibatch_size* specifies how many candidates to use in order to create a triplet for training.
        """

        assert minibatch_size != None, "ERROR! Must provide 'minibatch_size'."
        assert steps_per_epoch != None, "ERROR! Must provide 'steps_per_epoch'."
        assert validation_steps != None, "ERROR! Must provide 'validation_steps'."

        y_dummy = np.zeros((batch_size, self.latent_dim * 3))

        # Template generator.
        def triplet_loss_generator(x_generator, y_generator, model, sampling):

            # Get the classes.
            classes = sorted(list(set(y_generator)))

            # Sort by classes for easy indexing.
            class_indices = {}
            for c in classes:
                class_indices[c] = []
            for index, c in enumerate(y_generator):
                class_indices[c].append(index)

            # Compute the complements.
            class_complements = {}
            for c in classes:
                class_complements[c] = [c2 for c2 in classes if c2 != c]

            # Generator loop.
            while True:

                x_input_anchors = []
                x_input_positives = []
                x_input_negatives = []

                # Generate a whole batch.
                for _ in range(batch_size):
                    anchor_class = random.choice(classes)
                    anchor_index = random.choice(class_indices[anchor_class])
                    anchor_input = x_generator[anchor_index]
                    #print("anchor_class", anchor_class)
                    anchor_latent = self.base.predict(
                        np.expand_dims(anchor_input, axis=0))[0]

                    # Generate some positive candidates.
                    positive_candidates = []
                    while len(positive_candidates) < minibatch_size:
                        positive_class = anchor_class
                        positive_index = random.choice(
                            class_indices[positive_class])
                        positive_input = x_generator[positive_index]
                        assert positive_class == y_generator[positive_index]
                        #print("positive_class", positive_class)
                        positive_candidates.append(positive_input)

                    # Find the farthest positive candidate.
                    positive_candidates = np.array(positive_candidates)
                    positive_latents = self.base.predict(positive_candidates)
                    positive_extremum = compute_latent_extremum(
                        anchor_latent, positive_latents, "argmax",
                        self.triplet_loss)
                    positive_input = positive_candidates[positive_extremum]

                    # Generate some negative candidates.
                    negative_candidates = []
                    while len(negative_candidates) < minibatch_size:
                        negative_class = random.choice(
                            class_complements[anchor_class])
                        negative_index = random.choice(
                            class_indices[negative_class])
                        negative_input = x_generator[negative_index]
                        assert negative_class == y_generator[negative_index]
                        #print("negative_class", negative_class)
                        negative_candidates.append(negative_input)

                    # Find the closest negative candidate.
                    negative_candidates = np.array(negative_candidates)
                    negative_latents = self.base.predict(negative_candidates)
                    negative_extremum = compute_latent_extremum(
                        anchor_latent, negative_latents, "argmin",
                        self.triplet_loss)
                    negative_input = negative_candidates[negative_extremum]

                    # Done.
                    x_input_anchors.append(anchor_input)
                    x_input_positives.append(positive_input)
                    x_input_negatives.append(negative_input)

                x_input_anchors = np.array(x_input_anchors)
                x_input_positives = np.array(x_input_positives)
                x_input_negatives = np.array(x_input_negatives)
                x_input = [
                    x_input_anchors, x_input_positives, x_input_negatives
                ]

                yield x_input, y_dummy

        # Create the generators.
        training_generator = triplet_loss_generator(x, y, batch_size,
                                                    self.siamese)
        if validation_data != None:
            validation_generator = triplet_loss_generator(
                validation_data[0], validation_data[1], batch_size,
                self.siamese)
        else:
            validation_generator = None

        # Create the history.
        history_keys = ["loss", "val_loss"]
        history = {}
        for history_key in history_keys:
            history[history_key] = []

        # Training the model
        for epoch in range(epochs):

            print("Epoch " + str(epoch + 1) + "/" + str(epochs) + "...")

            # Generating data for training.
            training_input, training_output = next(training_generator)
            if validation_generator != None:
                validation_input, validation_output = next(
                    validation_generator)

            model_history = self.siamese.fit(
                training_input,
                training_output,
                validation_data=(validation_input, validation_output),
                epochs=1,
                steps_per_epoch=steps_per_epoch,
                verbose=0,
                validation_steps=validation_steps)

            # Update the history.
            for history_key in history_keys:
                history_value = model_history.history[history_key]
                history[history_key].append(history_value)
                print(history_key, history_value)

        return history

    def fit_generator(self,
                      generator,
                      steps_per_epoch=None,
                      epochs=1,
                      verbose=1,
                      callbacks=None,
                      validation_data=None,
                      validation_steps=None,
                      class_weight=None,
                      max_queue_size=10,
                      workers=1,
                      use_multiprocessing=False,
                      shuffle=True,
                      initial_epoch=0):
        """
        Coming soon...
        """

        print("TODO: implement fit_generator!")

        raise Exception("Not implemented!")

        return self.siamese.fit_generator(generator, steps_per_epoch, epochs,
                                          verbose, callbacks, validation_data,
                                          validation_steps, class_weight,
                                          max_queue_size, workers,
                                          use_multiprocessing, shuffle,
                                          initial_epoch)

    def evaluate(self,
                 x=None,
                 y=None,
                 batch_size=None,
                 verbose=1,
                 sample_weight=None,
                 steps=None):
        """
        Evaluates the model. Same as vanilla Keras.
        """

        return self.siamese.evaluate(x,
                                     y,
                                     batch_size,
                                     verbose,
                                     sample_weight,
                                     steps=None)

    def predict(self, x, batch_size=None, verbose=0, steps=None):
        """
        Does a prediction. Same as vanilla Keras.
        """

        return self.siamese.predict(x, batch_size, verbose, steps)

    def summary(self):
        """
        Provides a summary.
        """

        print("Basemodel:")
        self.base.summary()
        print("Siamese model:")
        self.siamese.summary()

    def save(self, path):
        """
        Saves the TL.

        This includes the whole Siamese Net plus the base-model.

        This code

        >>> tl.save("myae.h5")

        will create the files *tl.h5*, and *tl-base.h5*.

        """
        self.siamese.save(path)
        self.base.save(append_to_filepath(path, "-base"))
Esempio n. 9
0
        y = TimeDistributed(Conv2D(512, 3, padding='same',
                                   activation='relu'))(y)
        y = TimeDistributed(Conv2D(512, 3, padding='same',
                                   activation='relu'))(y)
        y = TimeDistributed(MaxPooling2D(pool_size=(2, 2)))(y)

        # Tensor shape: (B, T, 4, 4, 512) -> (B, T, 1, 512)
        y = TimeDistributed(GlobalAveragePooling2D())(y)

    with tf.device(available_devices[3]):
        y = LSTM(128, return_sequences=False, return_state=False)(y)
        prediction = Dense(num_classes, activation='softmax')(y)

    # Instantiate a 'keras.engine.training.Model' instance
    model = Model(inputs=cnn_input, outputs=prediction)

    # Compile model
    model.compile(loss=keras.losses.categorical_crossentropy,
                  optimizer=keras.optimizers.Adam(lr=learning_rate),
                  metrics=['accuracy'])

    # Train model
    datadir = 'Z:/1. 프로젝트/2018_삼성SDS_스타크래프트/Supervised/trainingData_v3/data(선수별)/박성균/128/'
    generator = generate_arrays_from_directory(datadir, batch_size)
    steps_per_epoch = math.ceil(os.listdir(datadir).__len__() / batch_size)
    model.fit_generator(generator=generator,
                        steps_per_epoch=steps_per_epoch,
                        epochs=epochs,
                        max_queue_size=10,
                        verbose=1)
Esempio n. 10
0
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))
    input_a_df = pd.DataFrame(input_a_np)
    input_b_df = pd.DataFrame(input_b_np)

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))
    output_a_df = pd.DataFrame(output_a_np)
    output_b_df = pd.DataFrame(output_b_np)

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})
    out = model.train_on_batch([input_a_df, input_b_df],
                               [output_a_df, output_b_df])

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4)
    out = model.fit([input_a_df, input_b_df],
                    [output_a_df, output_b_df], epochs=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=(
                        {'input_a': input_a_np, 'input_b': input_b_np},
                        {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})
    out = model.test_on_batch([input_a_df, input_b_df],
                              [output_a_df, output_b_df])

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})
    out = model.predict_on_batch([input_a_df, input_b_df])

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.evaluate([input_a_df, input_b_df], [output_a_df, output_b_df], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)
    out = model.predict([input_a_df, input_b_df], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer, loss, metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer, loss, metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []

    # define tracer callback
    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)

    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin)

    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=5, batch_size=4,
                    initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    out = model.fit_generator(gen_data(4), steps_per_epoch=3, epochs=5,
                              initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # empty batch
    with pytest.raises(ValueError):
        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))
        out = model.evaluate_generator(gen_data(), steps=1)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[sample_weight[1], sample_weight[1][:2]])

    # `sample_weight` is neither a dict nor a list.
    with pytest.raises(TypeError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=tuple(sample_weight))

    # `validation_data` is neither a tuple nor a triple.
    with pytest.raises(ValueError):
        out = model.fit([input_a_np, input_b_np],
                        [output_a_np, output_b_np],
                        epochs=1, batch_size=4,
                        validation_data=([input_a_np, input_b_np],))

    # `loss` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=['mse', 'mae', 'mape'])

    # `loss_weights` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights={'lstm': 0.5})

    # `loss_weights` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights=[0.5])

    # `loss_weights` is invalid type.
    with pytest.raises(TypeError):
        model.compile(optimizer, loss='mse', loss_weights=(0.5, 0.5))

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode={'lstm': 'temporal'})

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode=['temporal'])

    # `sample_weight_mode` matches output_names partially.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode={'dense_1': 'temporal'})

    # `loss` does not exist.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=[])

    model.compile(optimizer, loss=['mse', 'mae'])
    model.compile(optimizer, loss='mse', loss_weights={'dense_1': 0.2, 'dropout': 0.8})
    model.compile(optimizer, loss='mse', loss_weights=[0.2, 0.8])

    # the rank of weight arrays should be 1.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[None, np.random.random((10, 20, 30))])

    model.compile(optimizer, loss='mse', sample_weight_mode={'dense_1': None, 'dropout': 'temporal'})
    model.compile(optimizer, loss='mse', sample_weight_mode=[None, 'temporal'])

    # the rank of output arrays should be at least 3D.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)
    trained_epochs = []
    out = model.fit_generator(generator=RandomSequence(3), steps_per_epoch=12, epochs=5,
                              initial_epoch=0, validation_data=RandomSequence(4),
                              validation_steps=12, callbacks=[tracker_cb])
    assert trained_epochs == [0, 1, 2, 3, 4]
Esempio n. 11
0
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np])

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], epochs=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    epochs=1, batch_size=4, validation_split=0.5,
                    validation_data=(
                        {'input_a': input_a_np, 'input_b': input_b_np},
                        {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer, loss, metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer, loss, metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []
    trained_batches = []

    # define tracer callback
    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)

    def on_batch_begin(batch, logs):
        trained_batches.append(batch)

    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin,
                                on_batch_begin=on_batch_begin)

    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], epochs=5, batch_size=4,
                    initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])

    out = model.fit_generator(gen_data(4), steps_per_epoch=3, epochs=5,
                              initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # enable verbose for evaluate_generator
    out = model.evaluate_generator(gen_data(4), steps=3, verbose=1)

    # empty batch
    with pytest.raises(ValueError):
        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))
        out = model.evaluate_generator(gen_data(), steps=1)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[sample_weight[1], sample_weight[1][:2]])

    # `sample_weight` is neither a dict nor a list.
    with pytest.raises(TypeError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=tuple(sample_weight))

    # `validation_data` is neither a tuple nor a triple.
    with pytest.raises(ValueError):
        out = model.fit([input_a_np, input_b_np],
                        [output_a_np, output_b_np],
                        epochs=1, batch_size=4,
                        validation_data=([input_a_np, input_b_np],))

    # `loss` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=['mse', 'mae', 'mape'])

    # `loss_weights` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights={'lstm': 0.5})

    # `loss_weights` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights=[0.5])

    # `loss_weights` is invalid type.
    with pytest.raises(TypeError):
        model.compile(optimizer, loss='mse', loss_weights=(0.5, 0.5))

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode={'lstm': 'temporal'})

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode=['temporal'])

    # `sample_weight_mode` matches output_names partially.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode={'dense_1': 'temporal'})

    # `loss` does not exist.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=[])

    model.compile(optimizer, loss=['mse', 'mae'])
    model.compile(optimizer, loss='mse', loss_weights={'dense_1': 0.2, 'dropout': 0.8})
    model.compile(optimizer, loss='mse', loss_weights=[0.2, 0.8])

    # the rank of weight arrays should be 1.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=[None, np.random.random((10, 20, 30))])

    model.compile(optimizer, loss='mse', sample_weight_mode={'dense_1': None, 'dropout': 'temporal'})
    model.compile(optimizer, loss='mse', sample_weight_mode=[None, 'temporal'])

    # the rank of output arrays should be at least 3D.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)

    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)
    trained_epochs = []
    trained_batches = []
    out = model.fit_generator(generator=RandomSequence(3), steps_per_epoch=3, epochs=5,
                              initial_epoch=0, validation_data=RandomSequence(4),
                              validation_steps=3, callbacks=[tracker_cb])
    assert trained_epochs == [0, 1, 2, 3, 4]
    assert trained_batches == list(range(3)) * 5

    # steps_per_epoch will be equal to len of sequence if it's unspecified
    trained_epochs = []
    trained_batches = []
    out = model.fit_generator(generator=RandomSequence(3), epochs=5,
                              initial_epoch=0, validation_data=RandomSequence(4),
                              callbacks=[tracker_cb])
    assert trained_epochs == [0, 1, 2, 3, 4]
    assert trained_batches == list(range(12)) * 5

    # fit_generator will throw an exception if steps is unspecified for regular generator
    with pytest.raises(ValueError):
        def gen_data():
            while True:
                yield (np.asarray([]), np.asarray([]))
        out = model.fit_generator(generator=gen_data(), epochs=5,
                                  initial_epoch=0, validation_data=gen_data(),
                                  callbacks=[tracker_cb])

    # Check if generator is only accessed an expected number of times
    gen_counters = [0, 0]

    def gen_data(i):
        while True:
            gen_counters[i] += 1
            yield ([np.random.random((1, 3)), np.random.random((1, 3))],
                   [np.random.random((1, 4)), np.random.random((1, 3))])
    out = model.fit_generator(generator=gen_data(0), epochs=3,
                              steps_per_epoch=2,
                              validation_data=gen_data(1),
                              validation_steps=1,
                              max_queue_size=2,
                              workers=2)

    # Need range check here as filling of the queue depends on sleep in the enqueuers
    assert 6 <= gen_counters[0] <= 8
    # 12 = (epoch * workers * validation steps * max_queue_size)
    assert 3 <= gen_counters[1] <= 12

    gen_counters = [0]
    out = model.fit_generator(generator=RandomSequence(3), epochs=3,
                              validation_data=gen_data(0),
                              validation_steps=1,
                              max_queue_size=2,
                              workers=2)

    # 12 = (epoch * workers * validation steps * max_queue_size)
    # Need range check here as filling of the queue depends on sleep in the enqueuers
    assert 3 <= gen_counters[0] <= 12

    # predict_generator output shape behavior should be consistent
    def expected_shape(batch_size, n_batches):
        return (batch_size * n_batches, 4), (batch_size * n_batches, 3)

    # Multiple outputs and one step.
    batch_size = 5
    sequence_length = 1
    shape_0, shape_1 = expected_shape(batch_size, sequence_length)
    out = model.predict_generator(RandomSequence(batch_size,
                                                 sequence_length=sequence_length))
    assert np.shape(out[0]) == shape_0 and np.shape(out[1]) == shape_1

    # Multiple outputs and multiple steps.
    batch_size = 5
    sequence_length = 2
    shape_0, shape_1 = expected_shape(batch_size, sequence_length)
    out = model.predict_generator(RandomSequence(batch_size,
                                                 sequence_length=sequence_length))
    assert np.shape(out[0]) == shape_0 and np.shape(out[1]) == shape_1

    # Create a model with a single output.
    single_output_model = Model([a, b], a_2)
    single_output_model.compile(optimizer, loss, metrics=[], sample_weight_mode=None)

    # Single output and one step.
    batch_size = 5
    sequence_length = 1
    shape_0, _ = expected_shape(batch_size, sequence_length)
    out = single_output_model.predict_generator(RandomSequence(batch_size,
                                                sequence_length=sequence_length))
    assert np.shape(out) == shape_0

    # Single output and multiple steps.
    batch_size = 5
    sequence_length = 2
    shape_0, _ = expected_shape(batch_size, sequence_length)
    out = single_output_model.predict_generator(RandomSequence(batch_size,
                                                sequence_length=sequence_length))
    assert np.shape(out) == shape_0
Esempio n. 12
0
def test_model_with_external_loss():
    # None loss, only regularization loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1',
                kernel_regularizer='l1',
                bias_regularizer='l2')(a)
    dp = Dropout(0.5, name='dropout')
    a_3 = dp(a_2)

    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    input_a_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # No dropout, external loss.
    a = Input(shape=(3,), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    a_3 = Dense(4, name='dense_2')(a)

    model = Model(a, [a_2, a_3])
    model.add_loss(K.mean(a_3 + a_2))

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # Test fit with no external data at all.
    if K.backend() == 'tensorflow':
        import tensorflow as tf

        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_2 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_2)
        model = Model(a, a_2)
        model.add_loss(K.mean(a_2))

        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # define a generator to produce x=None and y=None
        def data_tensors_generator():
            while True:
                yield (None, None)

        generator = data_tensors_generator()

        # test fit_generator for framework-native data tensors
        out = model.fit_generator(generator, epochs=1,
                                  steps_per_epoch=3)

        # test evaluate_generator for framework-native data tensors
        out = model.evaluate_generator(generator, steps=3)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None, None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None, None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
        with pytest.raises(ValueError):
            out = model.predict(None, batch_size=10)
        out = model.predict(None, steps=3)
        assert out.shape == (10 * 3, 4)

        # Test multi-output model without external data.
        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_1 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_1)
        model = Model(a, [a_1, a_2])
        model.add_loss(K.mean(a_2))
        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None, None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None, None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
        with pytest.raises(ValueError):
            out = model.predict(None, batch_size=10)
        out = model.predict(None, steps=3)
        assert len(out) == 2
        assert out[0].shape == (10 * 3, 4)
        assert out[1].shape == (10 * 3, 4)
Esempio n. 13
0
class ResiCNN:  # My JackNet with residual block
    cnn_filter_num = 64
    cnn_kernel_size = 3

    def __init__(self, channels=3):
        self.model = None
        self.optimizer = None
        self.channels = channels

    def bulid(self):  # build model
        image_in = Input((None, None, self.channels))

        conv = Conv2D(filters=self.cnn_filter_num,
                      kernel_size=self.cnn_kernel_size,
                      strides=(1, 1),
                      padding='same',
                      data_format='channels_last')(image_in)
        conv = Activation('relu')(conv)

        x = conv

        for layers in range(8):
            x = self._build_residual_block(x)

        conv_out = Conv2D(filters=self.channels,
                          kernel_size=self.cnn_kernel_size,
                          strides=(1, 1),
                          padding='same',
                          data_format='channels_last')(x)

        output = Add()([image_in, conv_out])

        self.model = Model(image_in, output, name='model')

    def _build_residual_block(self, x):  # build residual block
        x_in = x

        x = Conv2D(filters=self.cnn_filter_num,
                   kernel_size=self.cnn_kernel_size,
                   strides=(1, 1),
                   padding='same',
                   data_format='channels_last')(x)
        x = BatchNormalization(axis=-1)(x)
        x = Activation('relu')(x)
        x = Conv2D(filters=self.cnn_filter_num,
                   kernel_size=self.cnn_kernel_size,
                   strides=(1, 1),
                   padding='same',
                   data_format='channels_last')(x)
        x = BatchNormalization(axis=-1)(x)
        x = Add()([x_in, x])
        x = Activation("relu")(x)
        return x

    def predict(self, x):  # denoise on input x
        if x.ndim == 3:
            x = x.reshape(1, x.shape[0], x.shape[1], self.channels)
        return self.model.predict_on_batch(x)

    def load(self, config_path, model_path):  # load model
        print('restore model...')
        if os.path.exists(config_path) and os.path.exists(model_path):
            with open(config_path, 'r') as fp:
                self.model = Model.from_config(json.load(fp))
                self.model.load_weights(model_path)
            return True
        return False

    def save(self, config_path, model_path):  # save model
        with open(config_path, 'w') as fp:
            json.dump(self.model.get_config(), fp)
            self.model.save_weights(model_path)

    def compile(self):  # choose adam optimizer and set learning rate
        self.optimizer = Adam(lr=1e-2)
        self.model.compile(optimizer=self.optimizer, loss=self.loss)

    def train_generator(self,
                        data,
                        epochs=1,
                        steps_per_epochs=None,
                        callbacks=None):
        self.model.fit_generator(iter(data),
                                 epochs=epochs,
                                 steps_per_epoch=steps_per_epochs,
                                 callbacks=callbacks)

    def train(self, data, epochs=1, callbacks=None):
        self.model.fit(x=data[0],
                       y=data[1],
                       epochs=epochs,
                       batch_size=8,
                       callbacks=callbacks)

    @staticmethod
    def loss(y_true, y_pred):  # loss function, mean square error
        return 0.5 * K.sum(K.square(y_pred - y_true), axis=-1)
Esempio n. 14
0
                    W_regularizer=l2(.0005),
                    activation='softmax')(x)

model = Model(base_model.input, predictions)

#     model = load_model(filepath='./model4.29-0.69.hdf5')

opt = SGD(lr=.01, momentum=.9)
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

model_json = model.to_json()
with open("{}/{}.def".format(job_path, model_name), "w") as json_file:
    json_file.write(model_json)

print(train_generator.class_indices)
f = open("{}/{}.cls".format(job_path, model_name), 'w')
f.write(json.dumps(train_generator.class_indices))
f.close()

# fine-tune the model
model.fit_generator(
    train_generator,
    samples_per_epoch=nb_train_samples,
    epochs=epochs,
    validation_data=validation_generator,
    nb_val_samples=nb_validation_samples,
    callbacks=[lr_scheduler, csv_logger, checkpointer, tensorboard])

model.save_weights("{}/final_{}_{}.h5".format(job_path, job_name, model_name))
Esempio n. 15
0
def test_model_methods():
    a = Input(shape=(3, ), name='input_a')
    b = Input(shape=(3, ), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer,
                  loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # test fit
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    nb_epoch=1,
                    batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4,
                    validation_split=0.5)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4,
                    validation_split=0.5)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    nb_epoch=1,
                    batch_size=4,
                    validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4,
                    validation_data=([input_a_np,
                                      input_b_np], [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    nb_epoch=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    nb_epoch=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, {
                        'dense_1': output_a_np,
                        'dropout': output_b_np
                    }))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    })

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10, ))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'], sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []

    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)

    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin)
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    nb_epoch=5,
                    batch_size=4,
                    initial_epoch=2,
                    callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([
                np.random.random((batch_sz, 3)),
                np.random.random((batch_sz, 3))
            ], [
                np.random.random((batch_sz, 4)),
                np.random.random((batch_sz, 3))
            ])

    out = model.fit_generator(gen_data(4),
                              samples_per_epoch=10,
                              nb_epoch=5,
                              initial_epoch=2,
                              callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    mse = lambda y_true, y_pred: K.mean(K.pow(y_true - y_pred, 2))

    def mse_powers(y_true, y_pred):
        m = mse(y_true, y_pred)
        return {'mse_squared': K.pow(m, 2), 'mse_cubed': K.pow(m, 3)}

    model.compile(optimizer,
                  loss,
                  metrics=[mse, mse_powers],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * 4  # total loss, per layer: loss + 3 metrics
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    batch_size=4,
                    nb_epoch=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)
def test_model_with_external_loss():
    # None loss, only regularization loss.
    a = Input(shape=(3, ), name='input_a')
    a_2 = Dense(4,
                name='dense_1',
                kernel_regularizer='l1',
                bias_regularizer='l2')(a)
    dp = Dropout(0.5, name='dropout')
    a_3 = dp(a_2)

    model = Model(a, [a_2, a_3])

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    input_a_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # No dropout, external loss.
    a = Input(shape=(3, ), name='input_a')
    a_2 = Dense(4, name='dense_1')(a)
    a_3 = Dense(4, name='dense_2')(a)

    model = Model(a, [a_2, a_3])
    model.add_loss(K.mean(a_3 + a_2))

    optimizer = 'rmsprop'
    loss = None
    model.compile(optimizer, loss, metrics=['mae'])

    # test train_on_batch
    out = model.train_on_batch(input_a_np, None)
    out = model.test_on_batch(input_a_np, None)
    # fit
    out = model.fit(input_a_np, None)
    # evaluate
    out = model.evaluate(input_a_np, None)

    # Test fit with no external data at all.
    if K.backend() == 'tensorflow':
        import tensorflow as tf

        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_2 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_2)
        model = Model(a, a_2)
        model.add_loss(K.mean(a_2))

        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # define a generator to produce x=None and y=None
        def data_tensors_generator():
            while True:
                yield (None, None)

        generator = data_tensors_generator()

        # test fit_generator for framework-native data tensors
        out = model.fit_generator(generator, epochs=1, steps_per_epoch=3)

        # test evaluate_generator for framework-native data tensors
        out = model.evaluate_generator(generator, steps=3)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None,
                            None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None,
                        None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
        with pytest.raises(ValueError):
            out = model.predict(None, batch_size=10)
        out = model.predict(None, steps=3)
        assert out.shape == (10 * 3, 4)

        # Test multi-output model without external data.
        a = Input(tensor=tf.Variable(input_a_np, dtype=tf.float32))
        a_1 = Dense(4, name='dense_1')(a)
        a_2 = Dropout(0.5, name='dropout')(a_1)
        model = Model(a, [a_1, a_2])
        model.add_loss(K.mean(a_2))
        model.compile(optimizer='rmsprop',
                      loss=None,
                      metrics=['mean_squared_error'])

        # test train_on_batch
        out = model.train_on_batch(None, None)
        out = model.test_on_batch(None, None)
        out = model.predict_on_batch(None)

        # test fit
        with pytest.raises(ValueError):
            out = model.fit(None, None, epochs=1, batch_size=10)
        out = model.fit(None, None, epochs=1, steps_per_epoch=1)

        # test fit with validation data
        with pytest.raises(ValueError):
            out = model.fit(None,
                            None,
                            epochs=1,
                            steps_per_epoch=None,
                            validation_steps=2)
        out = model.fit(None,
                        None,
                        epochs=1,
                        steps_per_epoch=2,
                        validation_steps=2)

        # test evaluate
        with pytest.raises(ValueError):
            out = model.evaluate(None, None, batch_size=10)
        out = model.evaluate(None, None, steps=3)

        # test predict
        with pytest.raises(ValueError):
            out = model.predict(None, batch_size=10)
        out = model.predict(None, steps=3)
        assert len(out) == 2
        assert out[0].shape == (10 * 3, 4)
        assert out[1].shape == (10 * 3, 4)
Esempio n. 17
0
class AE(Model):
    """
    Autoencoder. This is a simple autoencoder consisting of an encoder and a decoder.

    You can use the class like this:
    >>> encoder = ...
    >>> decoder = ...
    >>> ae = Autoencoder(encoder=encoder, decoder=decoder)
    >>> ae.compile(...)
    >>> ae.fit(...)

    """
    def __init__(self, encoder=None, decoder=None, autoencoder=None):
        super(AE, self).__init__()

        # For calling this as a super-constructor.
        parameters = [encoder, decoder]
        if all(v is None for v in parameters):
            return

        # From loading.
        if encoder != None and decoder != None and autoencoder != None:
            self.encoder = encoder
            self.decoder = decoder
            self.autoencoder = autoencoder
            return

        # Check preconditions.
        assert len(encoder.outputs) == 1
        assert len(decoder.inputs) == 1
        assert encoder.outputs[0].shape[1:] == decoder.inputs[0].shape[
            1:], str(encoder.outputs[0].shape) + " " + str(
                decoder.inputs[0].shape)
        self.latent_dim = encoder.outputs[0].shape[1]

        self.encoder = encoder
        self.decoder = decoder

        # Creating the AE.
        inputs = self.encoder.inputs[0]
        outputs = self.decoder(self.encoder(inputs))
        self.autoencoder = Model(inputs, outputs, name='ae')

    def compile(self,
                optimizer,
                loss=None,
                metrics=None,
                loss_weights=None,
                sample_weight_mode=None,
                weighted_metrics=None,
                target_tensors=None,
                **kwargs):
        """
        Compiles the model.

        This is the same as compilation in Keras.

        """

        assert "reconstruction_loss" not in kwargs, "Not expected to use reconstruction_loss in AE."

        self.autoencoder.compile(optimizer, loss, metrics, loss_weights,
                                 sample_weight_mode, weighted_metrics,
                                 **kwargs)

    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_split=0.,
            validation_data=None,
            shuffle=True,
            class_weight=None,
            sample_weight=None,
            initial_epoch=0,
            steps_per_epoch=None,
            validation_steps=None,
            **kwargs):
        """
        Trains the autoencoder.
        """

        return self.autoencoder.fit(x, y, batch_size, epochs, verbose,
                                    callbacks, validation_split,
                                    validation_data, shuffle, class_weight,
                                    sample_weight, initial_epoch,
                                    steps_per_epoch, validation_steps,
                                    **kwargs)

    def fit_generator(self,
                      generator,
                      steps_per_epoch=None,
                      epochs=1,
                      verbose=1,
                      callbacks=None,
                      validation_data=None,
                      validation_steps=None,
                      class_weight=None,
                      max_queue_size=10,
                      workers=1,
                      use_multiprocessing=False,
                      shuffle=True,
                      initial_epoch=0):
        """
        Trains the autoencoder with a generator.
        """

        return self.autoencoder.fit_generator(
            generator,
            steps_per_epoch,
            epochs,
            verbose=verbose,
            callbacks=callbacks,
            validation_data=validation_data,
            validation_steps=validation_steps,
            class_weight=class_weight,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            shuffle=shuffle,
            initial_epoch=initial_epoch)

    def evaluate(self,
                 x=None,
                 y=None,
                 batch_size=None,
                 verbose=1,
                 sample_weight=None,
                 steps=None):
        """
        Evaluates the autoencoder.
        """

        return self.autoencoder.evaluate(x,
                                         y,
                                         batch_size,
                                         verbose,
                                         sample_weight,
                                         steps=None)

    def predict(self, x, batch_size=None, verbose=0, steps=None):
        """
        Does a prediction. This is the same as :func:`~ngdlm.models.AE.predict_reconstruct_from_samples`
        """

        return self.predict_reconstruct_from_samples(x, batch_size, verbose,
                                                     steps)

    def predict_reconstruct_from_samples(self,
                                         x,
                                         batch_size=None,
                                         verbose=0,
                                         steps=None):
        """
        Reconstructs samples.

        Samples are firstly mapped to latent space using the encoder.
        The resulting latent vectors are then mapped to reconstruction space via the decoder.
        """

        return self.autoencoder.predict(x, batch_size, verbose, steps)

    def predict_embed_samples_into_latent(self,
                                          x,
                                          batch_size=None,
                                          verbose=0,
                                          steps=None):
        """
        Embeds samples into latent space using the encoder.
        """

        return self.encoder.predict(x, batch_size, verbose, steps)

    def predict_reconstruct_from_latent(self,
                                        x,
                                        batch_size=None,
                                        verbose=0,
                                        steps=None):
        """
        Maps latent vectors to reconstruction space using the decoder.
        """

        return self.decoder.predict(x, batch_size, verbose, steps)

    def summary(self):
        """
        Provides a summary.
        """

        print("Encoder:")
        self.encoder.summary()
        print("Decoder:")
        self.decoder.summary()
        print("Autoencoder:")
        self.autoencoder.summary()

    def save(self, path):
        """
        Saves the autoencoder.

        This includes the whole autoencoder plus the encoder and the decoder.
        The encoder and decoder use the path plus a respective annotation.

        This code

        >>> ae.save("myae.h5")

        will create the files *myae.h5*, *myae-encoder.h5*, and *myae-decoder.h5*.

        """
        self.autoencoder.save(path)
        self.encoder.save(append_to_filepath(path, "-encoder"))
        self.decoder.save(append_to_filepath(path, "-decoder"))
Esempio n. 18
0
def test_model_methods():
    a = Input(shape=(3,), name='input_a')
    b = Input(shape=(3,), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]
    model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights,
                  sample_weight_mode=None)

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               [output_a_np, output_b_np])
    out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                               {'dense_1': output_a_np, 'dropout': output_b_np})

    # test fit
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np], nb_epoch=1, batch_size=4)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5)
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4,
                    validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    [output_a_np, output_b_np],
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]))
    out = model.fit({'input_a': input_a_np, 'input_b': input_b_np},
                    {'dense_1': output_a_np, 'dropout': output_b_np},
                    nb_epoch=1, batch_size=4, validation_split=0.5,
                    validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              [output_a_np, output_b_np])
    out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np},
                              {'dense_1': output_a_np, 'dropout': output_b_np})

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np})

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10,))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer, loss, metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer, loss, metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []

    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)
    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin)
    out = model.fit([input_a_np, input_b_np],
                    [output_a_np, output_b_np], nb_epoch=5, batch_size=4,
                    initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([np.random.random((batch_sz, 3)), np.random.random((batch_sz, 3))],
                   [np.random.random((batch_sz, 4)), np.random.random((batch_sz, 3))])
    out = model.fit_generator(gen_data(4), samples_per_epoch=10, nb_epoch=5,
                              initial_epoch=2, callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    mse = lambda y_true, y_pred: K.mean(K.pow(y_true - y_pred, 2))

    def mse_powers(y_true, y_pred):
        m = mse(y_true, y_pred)
        return {
            'mse_squared': K.pow(m, 2),
            'mse_cubed': K.pow(m, 3)
        }

    model.compile(optimizer, loss, metrics=[mse, mse_powers],
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * 4  # total loss, per layer: loss + 3 metrics
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, nb_epoch=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)
Esempio n. 19
0
def test_model_methods():
    a = Input(shape=(3, ), name='input_a')
    b = Input(shape=(3, ), name='input_b')

    a_2 = Dense(4, name='dense_1')(a)
    dp = Dropout(0.5, name='dropout')
    b_2 = dp(b)

    model = Model([a, b], [a_2, b_2])

    optimizer = 'rmsprop'
    loss = 'mse'
    loss_weights = [1., 0.5]

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    # training/testing doesn't work before compiling.
    with pytest.raises(RuntimeError):
        model.train_on_batch([input_a_np, input_b_np],
                             [output_a_np, output_b_np])

    model.compile(optimizer,
                  loss,
                  metrics=[],
                  loss_weights=loss_weights,
                  sample_weight_mode=None)

    # test train_on_batch
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.train_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # test fit
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    epochs=1,
                    batch_size=4)

    # test validation_split
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5)
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5)

    # test validation data
    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_data=([input_a_np,
                                      input_b_np], [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np],
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, [output_a_np, output_b_np]))
    out = model.fit({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    },
                    epochs=1,
                    batch_size=4,
                    validation_split=0.5,
                    validation_data=({
                        'input_a': input_a_np,
                        'input_b': input_b_np
                    }, {
                        'dense_1': output_a_np,
                        'dropout': output_b_np
                    }))

    # test_on_batch
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, [output_a_np, output_b_np])
    out = model.test_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    }, {
        'dense_1': output_a_np,
        'dropout': output_b_np
    })

    # predict_on_batch
    out = model.predict_on_batch([input_a_np, input_b_np])
    out = model.predict_on_batch({
        'input_a': input_a_np,
        'input_b': input_b_np
    })

    # predict, evaluate
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # with sample_weight
    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    sample_weight = [None, np.random.random((10, ))]
    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np],
                               sample_weight=sample_weight)

    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np],
                              sample_weight=sample_weight)

    # test accuracy metric
    model.compile(optimizer, loss, metrics=['acc'], sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 5
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 5

    # this should also work
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': 'acc'},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # and this as well
    model.compile(optimizer,
                  loss,
                  metrics={'dense_1': ['acc']},
                  sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    assert len(out) == 4
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == 4

    # test starting from non-zero initial epoch
    trained_epochs = []

    # define tracer callback
    def on_epoch_begin(epoch, logs):
        trained_epochs.append(epoch)

    tracker_cb = LambdaCallback(on_epoch_begin=on_epoch_begin)

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    epochs=5,
                    batch_size=4,
                    initial_epoch=2,
                    callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test starting from non-zero initial epoch for generator too
    trained_epochs = []

    def gen_data(batch_sz):
        while True:
            yield ([
                np.random.random((batch_sz, 3)),
                np.random.random((batch_sz, 3))
            ], [
                np.random.random((batch_sz, 4)),
                np.random.random((batch_sz, 3))
            ])

    out = model.fit_generator(gen_data(4),
                              steps_per_epoch=3,
                              epochs=5,
                              initial_epoch=2,
                              callbacks=[tracker_cb])
    assert trained_epochs == [2, 3, 4]

    # test with a custom metric function
    def mse(y_true, y_pred):
        return K.mean(K.pow(y_true - y_pred, 2))

    model.compile(optimizer, loss, metrics=[mse], sample_weight_mode=None)

    out = model.train_on_batch([input_a_np, input_b_np],
                               [output_a_np, output_b_np])
    out_len = 1 + 2 * (1 + 1)  # total loss + 2 outputs * (loss + metric)
    assert len(out) == out_len
    out = model.test_on_batch([input_a_np, input_b_np],
                              [output_a_np, output_b_np])
    assert len(out) == out_len

    input_a_np = np.random.random((10, 3))
    input_b_np = np.random.random((10, 3))

    output_a_np = np.random.random((10, 4))
    output_b_np = np.random.random((10, 3))

    out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                    batch_size=4,
                    epochs=1)
    out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np],
                         batch_size=4)
    out = model.predict([input_a_np, input_b_np], batch_size=4)

    # x is not a list of numpy arrays.
    with pytest.raises(ValueError):
        out = model.predict([None])

    # x does not match _feed_input_names.
    with pytest.raises(ValueError):
        out = model.predict([input_a_np, None, input_b_np])
    with pytest.raises(ValueError):
        out = model.predict([None, input_a_np, input_b_np])

    # all input/output/weight arrays should have the same number of samples.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np[:2]],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np[:2]],
                                   sample_weight=sample_weight)
    with pytest.raises(ValueError):
        out = model.train_on_batch(
            [input_a_np, input_b_np], [output_a_np, output_b_np],
            sample_weight=[sample_weight[1], sample_weight[1][:2]])

    # `sample_weight` is neither a dict nor a list.
    with pytest.raises(TypeError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=tuple(sample_weight))

    # `validation_data` is neither a tuple nor a triple.
    with pytest.raises(ValueError):
        out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np],
                        epochs=1,
                        batch_size=4,
                        validation_data=([input_a_np, input_b_np], ))

    # `loss` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss=['mse', 'mae', 'mape'])

    # `loss_weights` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights={'lstm': 0.5})

    # `loss_weights` does not match outputs.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', loss_weights=[0.5])

    # `loss_weights` is invalid type.
    with pytest.raises(TypeError):
        model.compile(optimizer, loss='mse', loss_weights=(0.5, 0.5))

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer,
                      loss='mse',
                      sample_weight_mode={'lstm': 'temporal'})

    # `sample_weight_mode` does not match output_names.
    with pytest.raises(ValueError):
        model.compile(optimizer, loss='mse', sample_weight_mode=['temporal'])

    # `sample_weight_mode` matches output_names partially.
    with pytest.raises(ValueError):
        model.compile(optimizer,
                      loss='mse',
                      sample_weight_mode={'dense_1': 'temporal'})

    # `loss` does not exist.
    with pytest.raises(RuntimeError):
        model.compile(optimizer, loss=[])

    model.compile(optimizer, loss=['mse', 'mae'])
    model.compile(optimizer,
                  loss='mse',
                  loss_weights={
                      'dense_1': 0.2,
                      'dropout': 0.8
                  })
    model.compile(optimizer, loss='mse', loss_weights=[0.2, 0.8])

    # the rank of weight arrays should be 1.
    with pytest.raises(ValueError):
        out = model.train_on_batch(
            [input_a_np, input_b_np], [output_a_np, output_b_np],
            sample_weight=[None, np.random.random((10, 20, 30))])

    model.compile(optimizer,
                  loss='mse',
                  sample_weight_mode={
                      'dense_1': None,
                      'dropout': 'temporal'
                  })
    model.compile(optimizer, loss='mse', sample_weight_mode=[None, 'temporal'])

    # the rank of output arrays should be at least 3D.
    with pytest.raises(ValueError):
        out = model.train_on_batch([input_a_np, input_b_np],
                                   [output_a_np, output_b_np],
                                   sample_weight=sample_weight)