def __init__(self,
              shape,
              kernel,
              filters,
              initializer=slim.initializers.xavier_initializer(),
              data_format='channels_last',
              activation=tf.tanh,
              normalize=False,
              forget_bias=1.,
              **kwargs):
     self._normalize = normalize
     self.kernel = kernel
     self.kernel_size = kernel
     self.filters = filters
     self._initializer = initializer
     self._activation = activation
     self._forget_bias = forget_bias
     self._size = tf.TensorShape(shape + [self.filters])
     self._feature_axis = self._size.ndims
     self.data_format = data_format
     if self._normalize:
         self.layer_norm_input_contribution = KL.LayerNormalization()
         self.layer_norm_input_gate = KL.LayerNormalization()
         self.layer_norm_output_gate = KL.LayerNormalization()
         self.layer_norm_forget_gate = KL.LayerNormalization()
         self.layer_norm_memory = KL.LayerNormalization()
     super(ConvLSTMCell, self).__init__(**kwargs)
 def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
     super(TransformerBlock, self).__init__()
     self.att = MultiHeadSelfAttention(embed_dim, num_heads)
     self.ffn = keras.Sequential([
         layers.Dense(ff_dim, activation="relu"),
         layers.Dense(embed_dim),
     ])
     self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
     self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
     self.dropout1 = layers.Dropout(rate)
     self.dropout2 = layers.Dropout(rate)
Esempio n. 3
0
 def apply(x):
     x = layers.GlobalAveragePooling2D(name=name + "_head_gap")(x)
     x = layers.LayerNormalization(
         epsilon=1e-6, name=name + "_head_layernorm"
     )(x)
     x = layers.Dense(num_classes, name=name + "_head_dense")(x)
     return x
Esempio n. 4
0
    def apply(inputs):
        x = inputs

        x = layers.Conv2D(
            filters=projection_dim,
            kernel_size=7,
            padding="same",
            groups=projection_dim,
            name=name + "_depthwise_conv",
        )(x)
        x = layers.LayerNormalization(epsilon=1e-6, name=name + "_layernorm")(x)
        x = layers.Dense(4 * projection_dim, name=name + "_pointwise_conv_1")(x)
        x = layers.Activation("gelu", name=name + "_gelu")(x)
        x = layers.Dense(projection_dim, name=name + "_pointwise_conv_2")(x)

        if layer_scale_init_value is not None:
            x = LayerScale(
                layer_scale_init_value,
                projection_dim,
                name=name + "_layer_scale",
            )(x)
        if drop_path_rate:
            layer = StochasticDepth(
                drop_path_rate, name=name + "_stochastic_depth"
            )
        else:
            layer = layers.Activation("linear", name=name + "_identity")

        return inputs + layer(x)
    def __init__(self,
                 FC_units=512,
                 num_filters=32,
                 num_classes=2,
                 droupout=0.4,
                 name="DCNN"):

        # calling superclass constructor
        super(DCNN, self).__init__(name=name)

        # adding layers to DCNN model object

        self.bert_layer = hub.KerasLayer(
            "https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1",
            trainable=False)

        self.bigram_layer = layers.Conv1D(filters=num_filters,
                                          kernel_size=2,
                                          padding='valid',
                                          activation='relu')

        self.trigram_layer = layers.Conv1D(filters=num_filters,
                                           kernel_size=3,
                                           padding='valid',
                                           activation='relu')

        self.fourgram_layer = layers.Conv1D(filters=num_filters,
                                            kernel_size=4,
                                            padding='valid',
                                            activation='relu')

        self.batchnorm = layers.BatchNormalization()
        self.layernorm = layers.LayerNormalization()
        self.pool_layer = layers.GlobalMaxPool1D()
        self.dense_layer = layers.Dense(FC_units, activation='relu')
        self.dropout_layer = layers.Dropout(rate=dropout_rate)

        if num_classes == 2:
            self.output_layer = layers.Dense(units=1, activation="sigmoid")
        else:
            self.output_layer = layers.Dense(units=nb_classes,
                                             activation="softmax")
Esempio n. 6
0
def ConvNeXt(
    depths,
    projection_dims,
    drop_path_rate=0.0,
    layer_scale_init_value=1e-6,
    default_size=224,
    model_name="convnext",
    include_preprocessing=True,
    include_top=True,
    weights=None,
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
):
    """Instantiates ConvNeXt architecture given specific configuration.

    Args:
      depths: An iterable containing depths for each individual stages.
      projection_dims: An iterable containing output number of channels of
      each individual stages.
      drop_path_rate: Stochastic depth probability. If 0.0, then stochastic
        depth won't be used.
      layer_scale_init_value: Layer scale coefficient. If 0.0, layer scaling
        won't be used.
      default_size: Default input image size.
      model_name: An optional name for the model.
      include_preprocessing: boolean denoting whther to include preprocessing in
        the model. When `weights="imagenet"` this should be always set to True.
        But for other models (e.g., randomly initialized) users should set it
        to False and apply preprocessing to data accordingly.
      include_top: Boolean denoting whether to include classification head to
        the model.
      weights: one of `None` (random initialization), `"imagenet"` (pre-training
        on ImageNet-1k), or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to
        use as image input for the model.
      input_shape: optional shape tuple, only to be specified if `include_top`
        is False. It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction when `include_top`
        is `False`.
        - `None` means that the output of the model will be the 4D tensor output
          of the last convolutional layer.
        - `avg` means that global average pooling will be applied to the output
          of the last convolutional layer, and thus the output of the model will
          be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images into, only to be
        specified if `include_top` is True, and if no `weights` argument is
        specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.

    Returns:
      A `keras.Model` instance.

    Raises:
        ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
        ValueError: if `classifier_activation` is not `softmax`, or `None`
          when using a pretrained top layer.
        ValueError: if `include_top` is True but `num_classes` is not 1000
          when using ImageNet.
    """
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError(
            "The `weights` argument should be either "
            "`None` (random initialization), `imagenet` "
            "(pre-training on ImageNet), "
            "or the path to the weights file to be loaded."
        )

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            "If using `weights` as `'imagenet'` with `include_top`"
            " as true, `classes` should be 1000"
        )

    # Determine proper input shape.
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if input_tensor is not None:
        inputs = utils.layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    x = inputs
    if include_preprocessing:
        channel_axis = (
            3 if backend.image_data_format() == "channels_last" else 1
        )
        num_channels = input_shape[channel_axis - 1]
        if num_channels == 3:
            x = PreStem(name=model_name)(x)

    # Stem block.
    stem = sequential.Sequential(
        [
            layers.Conv2D(
                projection_dims[0],
                kernel_size=4,
                strides=4,
                name=model_name + "_stem_conv",
            ),
            layers.LayerNormalization(
                epsilon=1e-6, name=model_name + "_stem_layernorm"
            ),
        ],
        name=model_name + "_stem",
    )

    # Downsampling blocks.
    downsample_layers = []
    downsample_layers.append(stem)

    num_downsample_layers = 3
    for i in range(num_downsample_layers):
        downsample_layer = sequential.Sequential(
            [
                layers.LayerNormalization(
                    epsilon=1e-6,
                    name=model_name + "_downsampling_layernorm_" + str(i),
                ),
                layers.Conv2D(
                    projection_dims[i + 1],
                    kernel_size=2,
                    strides=2,
                    name=model_name + "_downsampling_conv_" + str(i),
                ),
            ],
            name=model_name + "_downsampling_block_" + str(i),
        )
        downsample_layers.append(downsample_layer)

    # Stochastic depth schedule.
    # This is referred from the original ConvNeXt codebase:
    # https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py#L86
    depth_drop_rates = [
        float(x) for x in np.linspace(0.0, drop_path_rate, sum(depths))
    ]

    # First apply downsampling blocks and then apply ConvNeXt stages.
    cur = 0

    num_convnext_blocks = 4
    for i in range(num_convnext_blocks):
        x = downsample_layers[i](x)
        for j in range(depths[i]):
            x = ConvNeXtBlock(
                projection_dim=projection_dims[i],
                drop_path_rate=depth_drop_rates[cur + j],
                layer_scale_init_value=layer_scale_init_value,
                name=model_name + f"_stage_{i}_block_{j}",
            )(x)
        cur += depths[i]

    if include_top:
        x = Head(num_classes=classes, name=model_name)(x)
        imagenet_utils.validate_activation(classifier_activation, weights)

    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)
        x = layers.LayerNormalization(epsilon=1e-6)(x)

    model = training_lib.Model(inputs=inputs, outputs=x, name=model_name)

    # Load weights.
    if weights == "imagenet":
        if include_top:
            file_suffix = ".h5"
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_suffix = "_notop.h5"
            file_hash = WEIGHTS_HASHES[model_name][1]
        file_name = model_name + file_suffix
        weights_path = utils.data_utils.get_file(
            file_name,
            BASE_WEIGHTS_PATH + file_name,
            cache_subdir="models",
            file_hash=file_hash,
        )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model