def __init__(self, model_path='./model.h5', encoder_path='encoder.pkl'): self.model_path = model_path gdd.download_file_from_google_drive( file_id='1642JgezyxVSlowH9kiTuB6xCWr6KleEb', dest_path=model_path, unzip=True) self.model = load_model(model_path) self.encoder = pickle.load(open(encoder_path, 'rb'))
def download_model( self, model_url='https://drive.google.com/file/d/1642JgezyxVSlowH9kiTuB6xCWr6KleEb/view?usp=sharing' ): response = urllib2.urlopen(model_url) html = load_model(response.read()) return html """
def infer_with_model(model_filename, input_string, max_length, max_features): """evaluate the saved model against the test set """ from keras.model import load_model model = load_model(model_filename) pred_string = project_text_to_imdb_data(input_string, max_features, max_length) print("predicting on '%s'" % str(input_string)) print("predicting on '%s'" % str(pred_string)) pred = model.predict(pred_string, batch_size=1) print("got: '%s'" % str(pred)) return pred
import scipy.misc import random from scipy import pi img = cv2.imread('steering_wheel_image.jpg',0) rows,cols = img.shape smoothed_angle = 0 i = 0 from subprocess import call from keras.model import load_model model=load_model("Best_model_One/mymodel_best_model.ckpt") while(cv2.waitKey(10) != ord('q')): full_image = scipy.misc.imread("driving_dataset/driving_dataset/" + str(i) + ".jpg", mode="RGB") image = scipy.misc.imresize(full_image[-150:], [66, 200]) / 255.0 degrees = model.predict(image[None,...])[0][0] * 180.0 / scipy.pi #call("clear") print("Predicted steering angle: " + str(degrees) + " degrees") cv2.imshow("frame", cv2.cvtColor(full_image, cv2.COLOR_RGB2BGR)) #make smooth angle transitions by turning the steering wheel based on the difference of the current angle #and the predicted angle smoothed_angle += 0.2 * pow(abs((degrees - smoothed_angle)), 2.0 / 3.0) * (degrees - smoothed_angle) / abs(degrees - smoothed_angle) M = cv2.getRotationMatrix2D((cols/2,rows/2),-smoothed_angle,1) dst = cv2.warpAffine(img,M,(cols,rows)) cv2.imshow("steering wheel", dst) i += 1
from keras.layers import Input, Lambda, Conv2D from keras.model import load_model, Model from yolo_utils import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes sess = K.get_session() # Defining classes, anchors and image shape class_names = read_classes("model_data/coco_classes.txt") anchors = read_anchors("model_data/yolo_anchors.txt") image_shape = (720., 1280.) # Loading a pretrained model yolo_model = load_model("model_data/yolo.h5") yolo_model.summary() # Convert output of the model to usable bounding box tensors yolo_outputs = yolo_head(yolo_model.output, anchors, len(class_names)) # Filtering boxes scores, boxes, classes = yolo_eval(yolo_outputs, image_shape) # Run the graph on an image def predict(sess, image_file):
def get_model(): global model model = load_model('VGG16_cats_and_dogs.h5') print(" * Model loaded!")
scores.extend(s) precision = [] recall = [] for t, p in zip(true_rec, predict_rec): if len(t) != 0 and len(p) != 0: precision.append(get_precision_rectangle(t, p)) recall.append(get_recall_rectangle(t, p)) precision = np.mean(np.array(precision)) recall = np.mean(np.array(recall)) y_true = get_ground_truth(true_rec, predict_rec, 0.2) plot_roc(y_true, scores, "roc.png", True) print("precision", precision) print("recall", recall) if __name__ == "__main__": # model = train_model(SIZE) model = load_model("./modele/train_2000_vgg16.h5") model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) test_model(model, 20)
import numpy as np import cv2 from keras.model import load_model from flask import Flask, render_template, Response import tensorflow as tf global graph global writer from skimage.transform import resize graph = tf.get_default_graph() writer = None model = load_model("/content/drive/MyDrive/Colab Notebooks/iceberg_model.h5") app = Flask(__name__) print("[INFO] accessing video stream") vs = cv2.VideoCapture("") pred = "" def detect(frame): img = resize(frame, (75, 75)) img = np.expand_dims(img, axis=0) if (np.max(img) > 1): img = img / 255.0 with graph.as_default(): prediction = model.predict_classes(img) pred = prediction[0][0] if not pred:
from keras.model import load_model model = load_model('model.h5') #model.predict()
(str(ishape) for ishape in layer.input_shapes)) else: inputlabels = 'multiple' label = '%s\n|{input:|output:}|{{%s}|{%s}}' % (label, inputlabels, outputlabels) node = pydot.Node(layer_id, label=label) dot.add_node(node) for layer in layers: # objectの持つ番号を取得 layer_id = str(id(layer)) for i, node in enumerate(layer._inbound_nodes): # layerが持つnodeに対しても以下のformatで名前がついている node_key = layer.name + '_ib-' + str(i) if node_key in model._network_nodes: for inbound_layer in node.inbound_layers: inbound_layer_id = str(id(inbound_layer)) # graphにinbound_layerが登録されているか確認 assert dot.get_node(inbound_layer_id) assert dot.get_node(layer_id) # graphにedgeを登録 dot.add_edge(pydot.Edge(inbound_layer_id, layer_id)) return dot def set_position(nodes, edges): pass if __name__ == '__main__': model = load_model('./models/model.h5')
import scipy.misc import random from scipy import pi img = cv2.imread('steering_wheel_image.jpg',0) rows,cols = img.shape smoothed_angle = 0 i = 0 from subprocess import call from keras.model import load_model model=load_model("Best_model_Two/mymodel_best_model.ckpt") while(cv2.waitKey(10) != ord('q')): full_image = scipy.misc.imread("driving_dataset/driving_dataset/" + str(i) + ".jpg", mode="RGB") image = scipy.misc.imresize(full_image[-150:], [66, 200]) / 255.0 degrees = model.predict(image[None,...])[0][0] * 180.0 / scipy.pi #call("clear") print("Predicted steering angle: " + str(degrees) + " degrees") cv2.imshow("frame", cv2.cvtColor(full_image, cv2.COLOR_RGB2BGR)) #make smooth angle transitions by turning the steering wheel based on the difference of the current angle #and the predicted angle smoothed_angle += 0.2 * pow(abs((degrees - smoothed_angle)), 2.0 / 3.0) * (degrees - smoothed_angle) / abs(degrees - smoothed_angle) M = cv2.getRotationMatrix2D((cols/2,rows/2),-smoothed_angle,1) dst = cv2.warpAffine(img,M,(cols,rows)) cv2.imshow("steering wheel", dst) i += 1
import json import tenserflow as tf from tensorflow import Graph, Session img_height, img_width = 224, 224 with open('filepath.json') as f: lableInfo = f.read() lableInfo = json.load(lableInfo) # model = load_model('./models/modelfile.h5') model_graph = Graph() with model_graph.as_default(): tf_session = Session() with tf_Session.as_default(): model = load_model('./models/modelfile.h5') # Create your views here. def index(request): return render(request, 'index.html') def prediction(request): fileobj = request.FILES['image'] fs = FileSystemStorage() fs.save(fileobj.name, fileobj) image = fileobj.name.split('.')[:1] testimage = '.' + fs.url(fileobj) img = image.load_image(testimage, target_size=(img_height, img_height))
test_data_dir = 'test' test_datagen = ImageDataGenerator(rescale=1. / 255) #make the test data generator test_generator = test_datagen.flow_from_directory(directory=test_data_dir, target_size=(img_width, imd_height), batch_size=batch_size, color_mode="grayscale", shuffle=False, class_mode="None") test_samples = test_generator.n #make the predictions using the model model = load_model("hand_gestures.h5") test_generator.reset() pred = model.predict_generator(test_generator, steps=test_samples // batch_size, verbose=1) predicted_class_indices = np.argmax(pred, axis=1) #labeling the predicted output labels = (train_generator.class_indices) labels = dict((v, k) for k, v in labels.items()) predictions = [labels[k] for k in predicted_class_indices] #storing the result in csv file filenames = test_generator.filenames results = pd.DataFrame({"Filename": filenames, "Predictions": predictions}) results.to_csv("results.csv", index=False)
import glob import json import os from keras.model import load_model from utils.losses import compute_test_distribution models = glob.glob('results/model-architecture-*/best_model*.h5') for model_path in models: print(model_path) model = load_model(model_path) test_distribution = compute_test_distribution(model) with open( model_path.replace( model_path.split('/')[-1], 'training_distribution.json'), 'w+') as fp: json.dump(test_distribution, fp, sort_keys=True, indent=4)