Esempio n. 1
0
def _model_fn(features, labels, mode, params, model, variable_filter_fn=None):
    """Model definition entry.

  Args:
    features: the input image tensor with shape [batch_size, height, width, 3].
      The height and width are fixed and equal.
    labels: the input labels in a dictionary. The labels include class targets
      and box targets which are dense label maps. The labels are generated from
      get_input_fn function in data/dataloader.py
    mode: the mode of TPUEstimator including TRAIN, EVAL, and PREDICT.
    params: the dictionary defines hyperparameters of model. The default
      settings are in default_hparams function in this file.
    model: the model outputs class logits and box regression outputs.
    variable_filter_fn: the filter function that takes trainable_variables and
      returns the variable list after applying the filter rule.

  Returns:
    tpu_spec: the TPUEstimatorSpec to run training, evaluation, or prediction.

  Raises:
    RuntimeError: if both ckpt and backbone_ckpt are set.
  """
    utils.image('input_image', features)
    training_hooks = []
    params['is_training_bn'] = (mode == tf.estimator.ModeKeys.TRAIN)

    if params['use_keras_model']:

        def model_fn(inputs):
            model = efficientdet_keras.EfficientDetNet(
                config=hparams_config.Config(params))
            cls_out_list, box_out_list = model(inputs,
                                               params['is_training_bn'])
            cls_outputs, box_outputs = {}, {}
            for i in range(params['min_level'], params['max_level'] + 1):
                cls_outputs[i] = cls_out_list[i - params['min_level']]
                box_outputs[i] = box_out_list[i - params['min_level']]
            return cls_outputs, box_outputs
    else:
        model_fn = functools.partial(model,
                                     config=hparams_config.Config(params))

    precision = utils.get_precision(params['strategy'],
                                    params['mixed_precision'])
    cls_outputs, box_outputs = utils.build_model_with_precision(
        precision, model_fn, features, params['is_training_bn'])

    levels = cls_outputs.keys()
    for level in levels:
        cls_outputs[level] = tf.cast(cls_outputs[level], tf.float32)
        box_outputs[level] = tf.cast(box_outputs[level], tf.float32)

    # First check if it is in PREDICT mode.
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            'image': features,
        }
        for level in levels:
            predictions['cls_outputs_%d' % level] = cls_outputs[level]
            predictions['box_outputs_%d' % level] = box_outputs[level]
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Set up training loss and learning rate.
    update_learning_rate_schedule_parameters(params)
    global_step = tf.train.get_or_create_global_step()
    learning_rate = learning_rate_schedule(params, global_step)

    # cls_loss and box_loss are for logging. only total_loss is optimized.
    det_loss, cls_loss, box_loss, box_iou_loss = detection_loss(
        cls_outputs, box_outputs, labels, params)
    reg_l2loss = reg_l2_loss(params['weight_decay'])
    total_loss = det_loss + reg_l2loss

    if mode == tf.estimator.ModeKeys.TRAIN:
        utils.scalar('lrn_rate', learning_rate)
        utils.scalar('trainloss/cls_loss', cls_loss)
        utils.scalar('trainloss/box_loss', box_loss)
        utils.scalar('trainloss/det_loss', det_loss)
        utils.scalar('trainloss/reg_l2_loss', reg_l2loss)
        utils.scalar('trainloss/loss', total_loss)
        if params['iou_loss_type']:
            utils.scalar('trainloss/box_iou_loss', box_iou_loss)
        train_epochs = tf.cast(global_step,
                               tf.float32) / params['steps_per_epoch']
        utils.scalar('train_epochs', train_epochs)

    moving_average_decay = params['moving_average_decay']
    if moving_average_decay:
        ema = tf.train.ExponentialMovingAverage(decay=moving_average_decay,
                                                num_updates=global_step)
        ema_vars = utils.get_ema_vars()

    if mode == tf.estimator.ModeKeys.TRAIN:
        if params['optimizer'].lower() == 'sgd':
            optimizer = tf.train.MomentumOptimizer(learning_rate,
                                                   momentum=params['momentum'])
        elif params['optimizer'].lower() == 'adam':
            optimizer = tf.train.AdamOptimizer(learning_rate)
        else:
            raise ValueError('optimizers should be adam or sgd')

        if params['strategy'] == 'tpu':
            optimizer = tf.tpu.CrossShardOptimizer(optimizer)
        if params['gradient_checkpointing']:
            from third_party.grad_checkpoint \
                import memory_saving_gradients  # pylint: disable=g-import-not-at-top
            from tensorflow.python.ops \
                import gradients  # pylint: disable=g-import-not-at-top

            # monkey patch tf.gradients to point to our custom version,
            # with automatic checkpoint selection
            def gradients_(ys, xs, grad_ys=None, **kwargs):
                return memory_saving_gradients.gradients(
                    ys,
                    xs,
                    grad_ys,
                    checkpoints=params['gradient_checkpointing_list'],
                    **kwargs)

            gradients.__dict__["gradients"] = gradients_

        # Batch norm requires update_ops to be added as a train_op dependency.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        var_list = tf.trainable_variables()
        if variable_filter_fn:
            var_list = variable_filter_fn(var_list)

        if params.get('clip_gradients_norm', None):
            logging.info('clip gradients norm by %f',
                         params['clip_gradients_norm'])
            grads_and_vars = optimizer.compute_gradients(total_loss, var_list)
            with tf.name_scope('clip'):
                grads = [gv[0] for gv in grads_and_vars]
                tvars = [gv[1] for gv in grads_and_vars]
                # First clip each variable's norm, then clip global norm.
                clip_norm = abs(params['clip_gradients_norm'])
                clipped_grads = [tf.clip_by_norm(g, clip_norm) for g in grads]
                clipped_grads, _ = tf.clip_by_global_norm(
                    clipped_grads, clip_norm)
                utils.scalar('gradient_norm',
                             tf.linalg.global_norm(clipped_grads))
                grads_and_vars = list(zip(clipped_grads, tvars))

            with tf.control_dependencies(update_ops):
                train_op = optimizer.apply_gradients(grads_and_vars,
                                                     global_step)
        else:
            with tf.control_dependencies(update_ops):
                train_op = optimizer.minimize(total_loss,
                                              global_step,
                                              var_list=var_list)

        if moving_average_decay:
            with tf.control_dependencies([train_op]):
                train_op = ema.apply(ema_vars)

    else:
        train_op = None

    eval_metrics = None
    if mode == tf.estimator.ModeKeys.EVAL:

        def metric_fn(**kwargs):
            """Returns a dictionary that has the evaluation metrics."""
            if params['nms_configs'].get('pyfunc', True):
                detections_bs = []
                for index in range(kwargs['boxes'].shape[0]):
                    nms_configs = params['nms_configs']
                    detections = tf.numpy_function(
                        functools.partial(nms_np.per_class_nms,
                                          nms_configs=nms_configs),
                        [
                            kwargs['boxes'][index],
                            kwargs['scores'][index],
                            kwargs['classes'][index],
                            tf.slice(kwargs['image_ids'], [index], [1]),
                            tf.slice(kwargs['image_scales'], [index], [1]),
                            params['num_classes'],
                            nms_configs['max_output_size'],
                        ], tf.float32)
                    detections_bs.append(detections)
                detections_bs = postprocess.transform_detections(
                    tf.stack(detections_bs))
            else:
                # These two branches should be equivalent, but currently they are not.
                # TODO(tanmingxing): enable the non_pyfun path after bug fix.
                nms_boxes, nms_scores, nms_classes, _ = postprocess.per_class_nms(
                    params, kwargs['boxes'], kwargs['scores'],
                    kwargs['classes'], kwargs['image_scales'])
                img_ids = tf.cast(tf.expand_dims(kwargs['image_ids'], -1),
                                  nms_scores.dtype)
                detections_bs = [
                    img_ids * tf.ones_like(nms_scores),
                    nms_boxes[:, :, 1],
                    nms_boxes[:, :, 0],
                    nms_boxes[:, :, 3] - nms_boxes[:, :, 1],
                    nms_boxes[:, :, 2] - nms_boxes[:, :, 0],
                    nms_scores,
                    nms_classes,
                ]
                detections_bs = tf.stack(detections_bs,
                                         axis=-1,
                                         name='detnections')

            if params.get('testdev_dir', None):
                logging.info('Eval testdev_dir %s', params['testdev_dir'])
                eval_metric = coco_metric.EvaluationMetric(
                    testdev_dir=params['testdev_dir'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections_bs, tf.zeros([1]))
            else:
                logging.info('Eval val with groudtruths %s.',
                             params['val_json_file'])
                eval_metric = coco_metric.EvaluationMetric(
                    filename=params['val_json_file'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections_bs, kwargs['groundtruth_data'],
                    params['label_map'])

            # Add metrics to output.
            cls_loss = tf.metrics.mean(kwargs['cls_loss_repeat'])
            box_loss = tf.metrics.mean(kwargs['box_loss_repeat'])
            output_metrics = {
                'cls_loss': cls_loss,
                'box_loss': box_loss,
            }
            output_metrics.update(coco_metrics)
            return output_metrics

        cls_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(cls_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])
        box_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(box_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])

        cls_outputs = postprocess.to_list(cls_outputs)
        box_outputs = postprocess.to_list(box_outputs)
        params['nms_configs']['max_nms_inputs'] = anchors.MAX_DETECTION_POINTS
        boxes, scores, classes = postprocess.pre_nms(params, cls_outputs,
                                                     box_outputs)
        metric_fn_inputs = {
            'cls_loss_repeat': cls_loss_repeat,
            'box_loss_repeat': box_loss_repeat,
            'image_ids': labels['source_ids'],
            'groundtruth_data': labels['groundtruth_data'],
            'image_scales': labels['image_scales'],
            'boxes': boxes,
            'scores': scores,
            'classes': classes,
        }
        eval_metrics = (metric_fn, metric_fn_inputs)

    checkpoint = params.get('ckpt') or params.get('backbone_ckpt')

    if checkpoint and mode == tf.estimator.ModeKeys.TRAIN:
        # Initialize the model from an EfficientDet or backbone checkpoint.
        if params.get('ckpt') and params.get('backbone_ckpt'):
            raise RuntimeError(
                '--backbone_ckpt and --checkpoint are mutually exclusive')

        if params.get('backbone_ckpt'):
            var_scope = params['backbone_name'] + '/'
            if params['ckpt_var_scope'] is None:
                # Use backbone name as default checkpoint scope.
                ckpt_scope = params['backbone_name'] + '/'
            else:
                ckpt_scope = params['ckpt_var_scope'] + '/'
        else:
            # Load every var in the given checkpoint
            var_scope = ckpt_scope = '/'

        def scaffold_fn():
            """Loads pretrained model through scaffold function."""
            logging.info('restore variables from %s', checkpoint)

            var_map = utils.get_ckpt_var_map(
                ckpt_path=checkpoint,
                ckpt_scope=ckpt_scope,
                var_scope=var_scope,
                skip_mismatch=params['skip_mismatch'])

            tf.train.init_from_checkpoint(checkpoint, var_map)
            return tf.train.Scaffold()
    elif mode == tf.estimator.ModeKeys.EVAL and moving_average_decay:

        def scaffold_fn():
            """Load moving average variables for eval."""
            logging.info('Load EMA vars with ema_decay=%f',
                         moving_average_decay)
            restore_vars_dict = ema.variables_to_restore(ema_vars)
            saver = tf.train.Saver(restore_vars_dict)
            return tf.train.Scaffold(saver=saver)
    else:
        scaffold_fn = None

    if params['strategy'] != 'tpu':
        # Profile every 1K steps.
        if params.get('profile', False):
            profile_hook = tf.estimator.ProfilerHook(
                save_steps=1000,
                output_dir=params['model_dir'],
                show_memory=True)
            training_hooks.append(profile_hook)

            # Report memory allocation if OOM
            class OomReportingHook(tf.estimator.SessionRunHook):
                def before_run(self, run_context):
                    return tf.estimator.SessionRunArgs(
                        fetches=[],
                        options=tf.RunOptions(
                            report_tensor_allocations_upon_oom=True))

            training_hooks.append(OomReportingHook())

        logging_hook = tf.estimator.LoggingTensorHook(
            {
                'step': global_step,
                'det_loss': det_loss,
                'cls_loss': cls_loss,
                'box_loss': box_loss,
            },
            every_n_iter=params.get('iterations_per_loop', 100),
        )
        training_hooks.append(logging_hook)

        if params["nvgpu_logging"]:
            try:
                from third_party import nvgpu  # pylint: disable=g-import-not-at-top
                from functools import reduce  # pylint: disable=g-import-not-at-top

                def get_nested_value(d, path):
                    return reduce(dict.get, path, d)

                def nvgpu_gpu_info(inp):
                    inp = inp.decode("utf-8")
                    inp = inp.split(",")
                    inp = [x.strip() for x in inp]
                    value = get_nested_value(nvgpu.gpu_info(), inp)
                    return np.str(value)

                def commonsize(inp):
                    const_sizes = {
                        'B': 1,
                        'KB': 1e3,
                        'MB': 1e6,
                        'GB': 1e9,
                        'TB': 1e12,
                        'PB': 1e15,
                        'KiB': 1024,
                        'MiB': 1048576,
                        'GiB': 1073741824
                    }
                    inp = inp.split(" ")
                    # convert all to MiB
                    if inp[1] != 'MiB':
                        inp_ = float(
                            inp[0]) * (const_sizes[inp[1]] / 1048576.0)
                    else:
                        inp_ = float(inp[0])

                    return inp_

                def formatter_log(tensors):
                    """Format the output."""
                    mem_used = tensors["memory used"].decode("utf-8")
                    mem_total = tensors["memory total"].decode("utf-8")
                    mem_util = commonsize(mem_used) / commonsize(mem_total)
                    logstring = "GPU memory used: {} = {:.1%} of total GPU memory: {}".format(
                        mem_used, mem_util, mem_total)
                    return logstring

                mem_used = tf.py_func(nvgpu_gpu_info,
                                      ['gpu, fb_memory_usage, used'],
                                      [tf.string])[0]
                mem_total = tf.py_func(nvgpu_gpu_info,
                                       ['gpu, fb_memory_usage, total'],
                                       [tf.string])[0]

                logging_hook3 = tf.estimator.LoggingTensorHook(
                    tensors={
                        "memory used": mem_used,
                        "memory total": mem_total,
                    },
                    every_n_iter=params.get('iterations_per_loop', 100),
                    formatter=formatter_log,
                )
                training_hooks.append(logging_hook3)
            except:
                logging.error("nvgpu error: nvidia-smi format not recognized")

    if params['strategy'] == 'tpu':
        return tf.estimator.tpu.TPUEstimatorSpec(
            mode=mode,
            loss=total_loss,
            train_op=train_op,
            eval_metrics=eval_metrics,
            host_call=utils.get_tpu_host_call(global_step, params),
            scaffold_fn=scaffold_fn,
            training_hooks=training_hooks)
    else:
        eval_metric_ops = eval_metrics[0](
            **eval_metrics[1]) if eval_metrics else None
        utils.get_tpu_host_call(global_step, params)
        return tf.estimator.EstimatorSpec(mode=mode,
                                          loss=total_loss,
                                          train_op=train_op,
                                          eval_metric_ops=eval_metric_ops,
                                          scaffold=scaffold_fn(),
                                          training_hooks=training_hooks)
Esempio n. 2
0
def _model_fn(features, labels, mode, params, model, variable_filter_fn=None):
    """Model definition entry.

  Args:
    features: the input image tensor with shape [batch_size, height, width, 3].
      The height and width are fixed and equal.
    labels: the input labels in a dictionary. The labels include class targets
      and box targets which are dense label maps. The labels are generated from
      get_input_fn function in data/dataloader.py
    mode: the mode of TPUEstimator including TRAIN and EVAL.
    params: the dictionary defines hyperparameters of model. The default
      settings are in default_hparams function in this file.
    model: the model outputs class logits and box regression outputs.
    variable_filter_fn: the filter function that takes trainable_variables and
      returns the variable list after applying the filter rule.

  Returns:
    tpu_spec: the TPUEstimatorSpec to run training, evaluation, or prediction.

  Raises:
    RuntimeError: if both ckpt and backbone_ckpt are set.
  """
    is_tpu = params['strategy'] == 'tpu'
    if params['img_summary_steps']:
        utils.image('input_image', features, is_tpu)
    training_hooks = []
    params['is_training_bn'] = (mode == tf.estimator.ModeKeys.TRAIN)

    if params['use_keras_model']:

        def model_fn(inputs):
            model = efficientdet_keras.EfficientDetNet(
                config=hparams_config.Config(params))
            cls_out_list, box_out_list = model(inputs,
                                               params['is_training_bn'])
            cls_outputs, box_outputs = {}, {}
            for i in range(params['min_level'], params['max_level'] + 1):
                cls_outputs[i] = cls_out_list[i - params['min_level']]
                box_outputs[i] = box_out_list[i - params['min_level']]
            return cls_outputs, box_outputs
    else:
        model_fn = functools.partial(model,
                                     config=hparams_config.Config(params))

    precision = utils.get_precision(params['strategy'],
                                    params['mixed_precision'])
    cls_outputs, box_outputs = utils.build_model_with_precision(
        precision, model_fn, features, params['is_training_bn'])

    levels = cls_outputs.keys()
    for level in levels:
        cls_outputs[level] = tf.cast(cls_outputs[level], tf.float32)
        box_outputs[level] = tf.cast(box_outputs[level], tf.float32)

    # Set up training loss and learning rate.
    update_learning_rate_schedule_parameters(params)
    global_step = tf.train.get_or_create_global_step()
    learning_rate = learning_rate_schedule(params, global_step)

    # cls_loss and box_loss are for logging. only total_loss is optimized.
    det_loss, cls_loss, box_loss = detection_loss(cls_outputs, box_outputs,
                                                  labels, params)
    reg_l2loss = reg_l2_loss(params['weight_decay'])
    total_loss = det_loss + reg_l2loss

    if mode == tf.estimator.ModeKeys.TRAIN:
        utils.scalar('lrn_rate', learning_rate, is_tpu)
        utils.scalar('trainloss/cls_loss', cls_loss, is_tpu)
        utils.scalar('trainloss/box_loss', box_loss, is_tpu)
        utils.scalar('trainloss/det_loss', det_loss, is_tpu)
        utils.scalar('trainloss/reg_l2_loss', reg_l2loss, is_tpu)
        utils.scalar('trainloss/loss', total_loss, is_tpu)
        train_epochs = tf.cast(global_step,
                               tf.float32) / params['steps_per_epoch']
        utils.scalar('train_epochs', train_epochs, is_tpu)

    moving_average_decay = params['moving_average_decay']
    if moving_average_decay:
        ema = tf.train.ExponentialMovingAverage(decay=moving_average_decay,
                                                num_updates=global_step)
        ema_vars = utils.get_ema_vars()

    if mode == tf.estimator.ModeKeys.TRAIN:
        if params['optimizer'].lower() == 'sgd':
            optimizer = tf.train.MomentumOptimizer(learning_rate,
                                                   momentum=params['momentum'])
        elif params['optimizer'].lower() == 'adam':
            optimizer = tf.train.AdamOptimizer(learning_rate)
        else:
            raise ValueError('optimizers should be adam or sgd')

        if is_tpu:
            optimizer = tf.tpu.CrossShardOptimizer(optimizer)

        # Batch norm requires update_ops to be added as a train_op dependency.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        var_list = tf.trainable_variables()
        if variable_filter_fn:
            var_list = variable_filter_fn(var_list)

        if params.get('clip_gradients_norm', None):
            logging.info('clip gradients norm by %f',
                         params['clip_gradients_norm'])
            grads_and_vars = optimizer.compute_gradients(total_loss, var_list)
            with tf.name_scope('clip'):
                grads = [gv[0] for gv in grads_and_vars]
                tvars = [gv[1] for gv in grads_and_vars]
                # First clip each variable's norm, then clip global norm.
                clip_norm = abs(params['clip_gradients_norm'])
                clipped_grads = [
                    tf.clip_by_norm(g, clip_norm) if g is not None else None
                    for g in grads
                ]
                clipped_grads, _ = tf.clip_by_global_norm(
                    clipped_grads, clip_norm)
                utils.scalar('gradient_norm',
                             tf.linalg.global_norm(clipped_grads), is_tpu)
                grads_and_vars = list(zip(clipped_grads, tvars))

            with tf.control_dependencies(update_ops):
                train_op = optimizer.apply_gradients(grads_and_vars,
                                                     global_step)
        else:
            with tf.control_dependencies(update_ops):
                train_op = optimizer.minimize(total_loss,
                                              global_step,
                                              var_list=var_list)

        if moving_average_decay:
            with tf.control_dependencies([train_op]):
                train_op = ema.apply(ema_vars)

    else:
        train_op = None

    eval_metrics = None
    if mode == tf.estimator.ModeKeys.EVAL:

        def metric_fn(**kwargs):
            """Returns a dictionary that has the evaluation metrics."""
            if params['nms_configs'].get('pyfunc', True):
                detections_bs = []
                nms_configs = params['nms_configs']
                for index in range(kwargs['boxes'].shape[0]):
                    detections = tf.numpy_function(
                        functools.partial(nms_np.per_class_nms,
                                          nms_configs=nms_configs),
                        [
                            kwargs['boxes'][index],
                            kwargs['scores'][index],
                            kwargs['classes'][index],
                            tf.slice(kwargs['image_ids'], [index], [1]),
                            tf.slice(kwargs['image_scales'], [index], [1]),
                            params['num_classes'],
                            nms_configs['max_output_size'],
                        ], tf.float32)
                    detections_bs.append(detections)
                detections_bs = postprocess.transform_detections(
                    tf.stack(detections_bs))
            else:
                # These two branches should be equivalent, but currently they are not.
                # TODO(tanmingxing): enable the non_pyfun path after bug fix.
                nms_boxes, nms_scores, nms_classes, _ = postprocess.per_class_nms(
                    params, kwargs['boxes'], kwargs['scores'],
                    kwargs['classes'], kwargs['image_scales'])
                img_ids = tf.cast(tf.expand_dims(kwargs['image_ids'], -1),
                                  nms_scores.dtype)
                detections_bs = [
                    img_ids * tf.ones_like(nms_scores),
                    nms_boxes[:, :, 1],
                    nms_boxes[:, :, 0],
                    nms_boxes[:, :, 3] - nms_boxes[:, :, 1],
                    nms_boxes[:, :, 2] - nms_boxes[:, :, 0],
                    nms_scores,
                    nms_classes,
                ]
                detections_bs = tf.stack(detections_bs,
                                         axis=-1,
                                         name='detnections')

            if params.get('testdev_dir', None):
                logging.info('Eval testdev_dir %s', params['testdev_dir'])
                eval_metric = coco_metric.EvaluationMetric(
                    testdev_dir=params['testdev_dir'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections_bs, tf.zeros([1]))
            else:
                logging.info('Eval val with groudtruths %s.',
                             params['val_json_file'])
                eval_metric = coco_metric.EvaluationMetric(
                    filename=params['val_json_file'],
                    label_map=params['label_map'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections_bs, kwargs['groundtruth_data'])

            # Add metrics to output.
            cls_loss = tf.metrics.mean(kwargs['cls_loss_repeat'])
            box_loss = tf.metrics.mean(kwargs['box_loss_repeat'])
            output_metrics = {
                'cls_loss': cls_loss,
                'box_loss': box_loss,
            }
            output_metrics.update(coco_metrics)
            return output_metrics

        cls_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(cls_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])
        box_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(box_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])

        cls_outputs = postprocess.to_list(cls_outputs)
        box_outputs = postprocess.to_list(box_outputs)
        params['nms_configs']['max_nms_inputs'] = anchors.MAX_DETECTION_POINTS
        boxes, scores, classes = postprocess.pre_nms(params, cls_outputs,
                                                     box_outputs)
        metric_fn_inputs = {
            'cls_loss_repeat': cls_loss_repeat,
            'box_loss_repeat': box_loss_repeat,
            'image_ids': labels['source_ids'],
            'groundtruth_data': labels['groundtruth_data'],
            'image_scales': labels['image_scales'],
            'boxes': boxes,
            'scores': scores,
            'classes': classes,
        }
        eval_metrics = (metric_fn, metric_fn_inputs)

    checkpoint = params.get('ckpt') or params.get('backbone_ckpt')

    if checkpoint and mode == tf.estimator.ModeKeys.TRAIN:
        # Initialize the model from an EfficientDet or backbone checkpoint.
        if params.get('ckpt') and params.get('backbone_ckpt'):
            raise RuntimeError(
                '--backbone_ckpt and --checkpoint are mutually exclusive')

        if params.get('backbone_ckpt'):
            var_scope = params['backbone_name'] + '/'
            if params['ckpt_var_scope'] is None:
                # Use backbone name as default checkpoint scope.
                ckpt_scope = params['backbone_name'] + '/'
            else:
                ckpt_scope = params['ckpt_var_scope'] + '/'
        else:
            # Load every var in the given checkpoint
            var_scope = ckpt_scope = '/'

        def scaffold_fn():
            """Loads pretrained model through scaffold function."""
            logging.info('restore variables from %s', checkpoint)

            var_map = utils.get_ckpt_var_map(
                ckpt_path=checkpoint,
                ckpt_scope=ckpt_scope,
                var_scope=var_scope,
                skip_mismatch=params['skip_mismatch'])

            tf.train.init_from_checkpoint(checkpoint, var_map)
            return tf.train.Scaffold()
    elif mode == tf.estimator.ModeKeys.EVAL and moving_average_decay:

        def scaffold_fn():
            """Load moving average variables for eval."""
            logging.info('Load EMA vars with ema_decay=%f',
                         moving_average_decay)
            restore_vars_dict = ema.variables_to_restore(ema_vars)
            saver = tf.train.Saver(restore_vars_dict)
            return tf.train.Scaffold(saver=saver)
    else:
        scaffold_fn = None

    if is_tpu:
        return tf.estimator.tpu.TPUEstimatorSpec(
            mode=mode,
            loss=total_loss,
            train_op=train_op,
            eval_metrics=eval_metrics,
            host_call=utils.get_tpu_host_call(global_step, params),
            scaffold_fn=scaffold_fn,
            training_hooks=training_hooks)
    else:
        # Profile every 1K steps.
        if params.get('profile', False):
            profile_hook = tf.estimator.ProfilerHook(
                save_steps=1000,
                output_dir=params['model_dir'],
                show_memory=True)
            training_hooks.append(profile_hook)

            # Report memory allocation if OOM; it will slow down the running.
            class OomReportingHook(tf.estimator.SessionRunHook):
                def before_run(self, run_context):
                    return tf.estimator.SessionRunArgs(
                        fetches=[],
                        options=tf.RunOptions(
                            report_tensor_allocations_upon_oom=True))

            training_hooks.append(OomReportingHook())

        logging_hook = tf.estimator.LoggingTensorHook(
            {
                'step': global_step,
                'det_loss': det_loss,
                'cls_loss': cls_loss,
                'box_loss': box_loss,
            },
            every_n_iter=params.get('iterations_per_loop', 100),
        )
        training_hooks.append(logging_hook)

        eval_metric_ops = (eval_metrics[0](
            **eval_metrics[1]) if eval_metrics else None)
        return tf.estimator.EstimatorSpec(
            mode=mode,
            loss=total_loss,
            train_op=train_op,
            eval_metric_ops=eval_metric_ops,
            scaffold=scaffold_fn() if scaffold_fn else None,
            training_hooks=training_hooks)
Esempio n. 3
0
def _model_fn(features, labels, mode, params, model, variable_filter_fn=None):
    """Model definition entry.

  Args:
    features: the input image tensor with shape [batch_size, height, width, 3].
      The height and width are fixed and equal.
    labels: the input labels in a dictionary. The labels include class targets
      and box targets which are dense label maps. The labels are generated from
      get_input_fn function in data/dataloader.py
    mode: the mode of TPUEstimator including TRAIN, EVAL, and PREDICT.
    params: the dictionary defines hyperparameters of model. The default
      settings are in default_hparams function in this file.
    model: the model outputs class logits and box regression outputs.
    variable_filter_fn: the filter function that takes trainable_variables and
      returns the variable list after applying the filter rule.

  Returns:
    tpu_spec: the TPUEstimatorSpec to run training, evaluation, or prediction.

  Raises:
    RuntimeError: if both ckpt and backbone_ckpt are set.
  """
    utils.image('input_image', features)
    training_hooks = []

    def _model_outputs(inputs):
        # Convert params (dict) to Config for easier access.
        return model(inputs, config=hparams_config.Config(params))

    precision = utils.get_precision(params['strategy'],
                                    params['mixed_precision'])
    cls_outputs, box_outputs = utils.build_model_with_precision(
        precision, _model_outputs, features, params['is_training_bn'])

    levels = cls_outputs.keys()
    for level in levels:
        cls_outputs[level] = tf.cast(cls_outputs[level], tf.float32)
        box_outputs[level] = tf.cast(box_outputs[level], tf.float32)

    # First check if it is in PREDICT mode.
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            'image': features,
        }
        for level in levels:
            predictions['cls_outputs_%d' % level] = cls_outputs[level]
            predictions['box_outputs_%d' % level] = box_outputs[level]
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # Set up training loss and learning rate.
    update_learning_rate_schedule_parameters(params)
    global_step = tf.train.get_or_create_global_step()
    learning_rate = learning_rate_schedule(params, global_step)

    # cls_loss and box_loss are for logging. only total_loss is optimized.
    det_loss, cls_loss, box_loss, box_iou_loss = detection_loss(
        cls_outputs, box_outputs, labels, params)
    reg_l2loss = reg_l2_loss(params['weight_decay'])
    total_loss = det_loss + reg_l2loss

    if mode == tf.estimator.ModeKeys.TRAIN:
        utils.scalar('lrn_rate', learning_rate)
        utils.scalar('trainloss/cls_loss', cls_loss)
        utils.scalar('trainloss/box_loss', box_loss)
        utils.scalar('trainloss/det_loss', det_loss)
        utils.scalar('trainloss/reg_l2_loss', reg_l2loss)
        utils.scalar('trainloss/loss', total_loss)
        if params['iou_loss_type']:
            utils.scalar('trainloss/box_iou_loss', box_iou_loss)

    moving_average_decay = params['moving_average_decay']
    if moving_average_decay:
        ema = tf.train.ExponentialMovingAverage(decay=moving_average_decay,
                                                num_updates=global_step)
        ema_vars = utils.get_ema_vars()
    if params['strategy'] == 'horovod':
        import horovod.tensorflow as hvd  # pylint: disable=g-import-not-at-top
        learning_rate = learning_rate * hvd.size()
    if mode == tf.estimator.ModeKeys.TRAIN:
        if params['optimizer'].lower() == 'sgd':
            optimizer = tf.train.MomentumOptimizer(learning_rate,
                                                   momentum=params['momentum'])
        elif params['optimizer'].lower() == 'adam':
            optimizer = tf.train.AdamOptimizer(learning_rate)
        else:
            raise ValueError('optimizers should be adam or sgd')

        if params['strategy'] == 'tpu':
            optimizer = tf.tpu.CrossShardOptimizer(optimizer)
        elif params['strategy'] == 'horovod':
            optimizer = hvd.DistributedOptimizer(optimizer)
            training_hooks = [hvd.BroadcastGlobalVariablesHook(0)]

        # Batch norm requires update_ops to be added as a train_op dependency.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        var_list = tf.trainable_variables()
        if variable_filter_fn:
            var_list = variable_filter_fn(var_list)

        if params.get('clip_gradients_norm', 0) > 0:
            logging.info('clip gradients norm by %f',
                         params['clip_gradients_norm'])
            grads_and_vars = optimizer.compute_gradients(total_loss, var_list)
            with tf.name_scope('clip'):
                grads = [gv[0] for gv in grads_and_vars]
                tvars = [gv[1] for gv in grads_and_vars]
                clipped_grads, gnorm = tf.clip_by_global_norm(
                    grads, params['clip_gradients_norm'])
                utils.scalar('gnorm', gnorm)
                grads_and_vars = list(zip(clipped_grads, tvars))

            with tf.control_dependencies(update_ops):
                train_op = optimizer.apply_gradients(grads_and_vars,
                                                     global_step)
        else:
            with tf.control_dependencies(update_ops):
                train_op = optimizer.minimize(total_loss,
                                              global_step,
                                              var_list=var_list)

        if moving_average_decay:
            with tf.control_dependencies([train_op]):
                train_op = ema.apply(ema_vars)

    else:
        train_op = None

    eval_metrics = None
    if mode == tf.estimator.ModeKeys.EVAL:

        def metric_fn(**kwargs):
            """Returns a dictionary that has the evaluation metrics."""
            nms_boxes, nms_scores, nms_classes, _ = postprocess.per_class_nms(
                params, kwargs['boxes'], kwargs['scores'], kwargs['classes'],
                kwargs['image_scales'])
            img_ids = tf.cast(tf.expand_dims(kwargs['source_ids'], -1),
                              nms_scores.dtype)
            detections = [
                img_ids * tf.ones_like(nms_scores),
                nms_boxes[:, :, 1],
                nms_boxes[:, :, 0],
                nms_boxes[:, :, 3] - nms_boxes[:, :, 1],
                nms_boxes[:, :, 2] - nms_boxes[:, :, 0],
                nms_scores,
                nms_classes,
            ]
            detections = tf.stack(detections, axis=-1, name='detnections')
            kwargs['detections_bs'] = detections

            if params.get('testdev_dir', None):
                logging.info('Eval testdev_dir %s', params['testdev_dir'])
                eval_metric = coco_metric.EvaluationMetric(
                    testdev_dir=params['testdev_dir'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections, tf.zeros([1]))
            else:
                logging.info('Eval val with groudtruths %s.',
                             params['val_json_file'])
                eval_metric = coco_metric.EvaluationMetric(
                    filename=params['val_json_file'])
                coco_metrics = eval_metric.estimator_metric_fn(
                    detections, kwargs['groundtruth_data'])

            # Add metrics to output.
            cls_loss = tf.metrics.mean(kwargs['cls_loss_repeat'])
            box_loss = tf.metrics.mean(kwargs['box_loss_repeat'])
            output_metrics = {
                'cls_loss': cls_loss,
                'box_loss': box_loss,
            }
            output_metrics.update(coco_metrics)
            return output_metrics

        cls_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(cls_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])
        box_loss_repeat = tf.reshape(
            tf.tile(tf.expand_dims(box_loss, 0), [
                params['batch_size'],
            ]), [params['batch_size'], 1])

        cls_outputs = postprocess.to_list(cls_outputs)
        box_outputs = postprocess.to_list(box_outputs)
        params['nms_configs']['max_nms_inputs'] = anchors.MAX_DETECTION_POINTS
        boxes, scores, classes = postprocess.pre_nms(params, cls_outputs,
                                                     box_outputs)
        metric_fn_inputs = {
            'cls_loss_repeat': cls_loss_repeat,
            'box_loss_repeat': box_loss_repeat,
            'source_ids': labels['source_ids'],
            'groundtruth_data': labels['groundtruth_data'],
            'image_scales': labels['image_scales'],
            'boxes': boxes,
            'scores': scores,
            'classes': classes,
        }
        eval_metrics = (metric_fn, metric_fn_inputs)

    checkpoint = params.get('ckpt') or params.get('backbone_ckpt')

    if checkpoint and mode == tf.estimator.ModeKeys.TRAIN:
        # Initialize the model from an EfficientDet or backbone checkpoint.
        if params.get('ckpt') and params.get('backbone_ckpt'):
            raise RuntimeError(
                '--backbone_ckpt and --checkpoint are mutually exclusive')

        if params.get('backbone_ckpt'):
            var_scope = params['backbone_name'] + '/'
            if params['ckpt_var_scope'] is None:
                # Use backbone name as default checkpoint scope.
                ckpt_scope = params['backbone_name'] + '/'
            else:
                ckpt_scope = params['ckpt_var_scope'] + '/'
        else:
            # Load every var in the given checkpoint
            var_scope = ckpt_scope = '/'

        def scaffold_fn():
            """Loads pretrained model through scaffold function."""
            logging.info('restore variables from %s', checkpoint)

            var_map = utils.get_ckpt_var_map(ckpt_path=checkpoint,
                                             ckpt_scope=ckpt_scope,
                                             var_scope=var_scope,
                                             var_exclude_expr=params.get(
                                                 'var_exclude_expr', None))

            tf.train.init_from_checkpoint(checkpoint, var_map)

            return tf.train.Scaffold()
    elif mode == tf.estimator.ModeKeys.EVAL and moving_average_decay:

        def scaffold_fn():
            """Load moving average variables for eval."""
            logging.info('Load EMA vars with ema_decay=%f',
                         moving_average_decay)
            restore_vars_dict = ema.variables_to_restore(ema_vars)
            saver = tf.train.Saver(restore_vars_dict)
            return tf.train.Scaffold(saver=saver)
    else:
        scaffold_fn = None

    if params['strategy'] != 'tpu':
        # Profile every 1K steps.
        profile_hook = tf.train.ProfilerHook(save_steps=1000,
                                             output_dir=params['model_dir'])
        training_hooks.append(profile_hook)

        # Report memory allocation if OOM
        class OomReportingHook(tf.estimator.SessionRunHook):
            def before_run(self, run_context):
                return tf.estimator.SessionRunArgs(
                    fetches=[],
                    options=tf.RunOptions(
                        report_tensor_allocations_upon_oom=True))

        training_hooks.append(OomReportingHook())

    return tf.estimator.tpu.TPUEstimatorSpec(mode=mode,
                                             loss=total_loss,
                                             train_op=train_op,
                                             eval_metrics=eval_metrics,
                                             host_call=utils.get_tpu_host_call(
                                                 global_step, params),
                                             scaffold_fn=scaffold_fn,
                                             training_hooks=training_hooks)