Esempio n. 1
0
 def test_wide_deep_model_with_sub_model_trained(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(
         linear.LinearModel(units=1),
         sequential.Sequential([core.Dense(units=1, input_dim=3)]))
     linear_inp = np.random.uniform(low=-5, high=5, size=(64, 2))
     dnn_inp = np.random.uniform(low=-5, high=5, size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = .3 * linear_inp[:, 0] + .2 * dnn_inp[:, 1]
     linear_model.compile(optimizer='sgd',
                          loss='mse',
                          metrics=[],
                          run_eagerly=testing_utils.should_run_eagerly())
     dnn_model.compile(optimizer='adam',
                       loss='mse',
                       metrics=[],
                       run_eagerly=testing_utils.should_run_eagerly())
     linear_model.fit(linear_inp, output, epochs=50)
     dnn_model.fit(dnn_inp, output, epochs=50)
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=50)
Esempio n. 2
0
 def test_linear_model(self, distribution, use_dataset_creator, data_fn):
     if ((not use_dataset_creator) and isinstance(
             distribution,
             tf.distribute.experimental.ParameterServerStrategy)):
         self.skipTest(
             'Parameter Server strategy requires dataset creator to be used in '
             'model.fit.')
     if (not tf.__internal__.tf2.enabled() and use_dataset_creator
             and isinstance(
                 distribution,
                 tf.distribute.experimental.ParameterServerStrategy)):
         self.skipTest(
             'Parameter Server strategy with dataset creator needs to be run when '
             'eager execution is enabled.')
     with distribution.scope():
         model = linear.LinearModel()
         opt = gradient_descent.SGD(learning_rate=0.1)
         model.compile(opt, 'mse')
         if use_dataset_creator:
             x = dataset_creator.DatasetCreator(dataset_fn)
             hist = model.fit(x, epochs=5, steps_per_epoch=INPUT_SIZE)
         else:
             if data_fn == 'numpy':
                 inputs, output = get_numpy()
                 hist = model.fit(inputs, output, epochs=5)
             else:
                 hist = model.fit(get_dataset(), epochs=5)
             self.assertLess(hist.history['loss'][4], 0.2)
Esempio n. 3
0
 def test_linear_model_with_single_input(self):
     model = linear.LinearModel()
     inp = np.random.uniform(low=-5, high=5, size=(64, 2))
     output = .3 * inp[:, 0] + .2 * inp[:, 1]
     model.compile('sgd', 'mse', [])
     model.fit(inp, output, epochs=5)
     self.assertTrue(model.built)
Esempio n. 4
0
 def test_wide_deep_model_with_two_feature_columns(self):
     vocab_list = ['alpha', 'beta', 'gamma']
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = tf.feature_column.categorical_column_with_vocabulary_list(
         key='symbol', vocabulary_list=vocab_list)
     ind_column = tf.feature_column.indicator_column(cat_column)
     emb_column = tf.feature_column.embedding_column(cat_column,
                                                     dimension=5)
     linear_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer='zeros')
     combined_linear = sequential.Sequential(
         [linear_feature_layer, linear_model])
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column])
     combined_dnn = sequential.Sequential([dnn_feature_layer, dnn_model])
     wide_deep_model = wide_deep.WideDeepModel(combined_linear,
                                               combined_dnn)
     opt = gradient_descent.SGD(learning_rate=0.1)
     wide_deep_model.compile(opt,
                             'mse', [],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
Esempio n. 5
0
 def test_wide_deep_model_backprop(self):
     with self.cached_session():
         linear_model = linear.LinearModel(units=1,
                                           kernel_initializer='zeros')
         dnn_model = sequential.Sequential(
             [core.Dense(units=1, kernel_initializer='zeros')])
         wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
         linear_inp = np.array([1.])
         dnn_inp = np.array([1.])
         inputs = [linear_inp, dnn_inp]
         output = linear_inp + 2 * dnn_inp
         linear_opt = gradient_descent.SGD(learning_rate=.1)
         dnn_opt = gradient_descent.SGD(learning_rate=.3)
         wide_deep_model.compile(
             optimizer=[linear_opt, dnn_opt],
             loss='mse',
             metrics=[],
             run_eagerly=testing_utils.should_run_eagerly())
         self.evaluate(tf.compat.v1.global_variables_initializer())
         wide_deep_model.fit(inputs, output, epochs=1)
         self.assertAllClose(
             [[0.6]],
             self.evaluate(
                 wide_deep_model.linear_model.dense_layers[0].kernel))
         self.assertAllClose(
             [[1.8]],
             self.evaluate(wide_deep_model.dnn_model.layers[0].kernel))
Esempio n. 6
0
 def test_linear_model_with_dict_input(self):
     model = linear.LinearModel()
     input_a = np.random.uniform(low=-5, high=5, size=(64, 1))
     input_b = np.random.uniform(low=-5, high=5, size=(64, 1))
     output = .3 * input_a + .2 * input_b
     model.compile('sgd', 'mse', [])
     model.fit({'a': input_a, 'b': input_b}, output, epochs=5)
Esempio n. 7
0
    def test_wide_deep_model(self, distribution, use_dataset_creator, data_fn):
        if ((not use_dataset_creator) and isinstance(
                distribution,
                tf.distribute.experimental.ParameterServerStrategy)):
            self.skipTest(
                'Parameter Server strategy requires dataset creator to be used in '
                'model.fit.')
        if (not tf.__internal__.tf2.enabled() and use_dataset_creator
                and isinstance(
                    distribution,
                    tf.distribute.experimental.ParameterServerStrategy)):
            self.skipTest(
                'Parameter Server strategy with dataset creator needs to be run when '
                'eager execution is enabled.')
        with distribution.scope():
            linear_model = linear.LinearModel(units=1)
            dnn_model = sequential.Sequential([core.Dense(units=1)])
            wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
            linear_opt = gradient_descent.SGD(learning_rate=0.05)
            dnn_opt = adagrad.Adagrad(learning_rate=0.1)
            wide_deep_model.compile(optimizer=[linear_opt, dnn_opt],
                                    loss='mse')

            if use_dataset_creator:
                x = dataset_creator.DatasetCreator(dataset_fn)
                hist = wide_deep_model.fit(x,
                                           epochs=5,
                                           steps_per_epoch=INPUT_SIZE)
            else:
                if data_fn == 'numpy':
                    inputs, output = get_numpy()
                    hist = wide_deep_model.fit(inputs, output, epochs=5)
                else:
                    hist = wide_deep_model.fit(get_dataset(), epochs=5)
            self.assertLess(hist.history['loss'][4], 0.2)
Esempio n. 8
0
 def test_config(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     config = wide_deep_model.get_config()
     cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(config)
     self.assertEqual(linear_model.units,
                      cloned_wide_deep_model.linear_model.units)
     self.assertEqual(dnn_model.layers[0].units,
                      cloned_wide_deep_model.dnn_model.layers[0].units)
Esempio n. 9
0
 def test_wide_deep_model_with_single_input(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     inputs = np.random.uniform(low=-5, high=5, size=(64, 3))
     output = .3 * inputs[:, 0]
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
Esempio n. 10
0
 def test_linear_model(self, distribution, data_fn):
     with distribution.scope():
         model = linear.LinearModel()
         opt = gradient_descent.SGD(learning_rate=0.1)
         model.compile(opt, 'mse')
         if data_fn == 'numpy':
             inputs, output = get_numpy()
             hist = model.fit(inputs, output, epochs=5)
         else:
             hist = model.fit(get_dataset(), epochs=5)
         self.assertLess(hist.history['loss'][4], 0.2)
Esempio n. 11
0
 def test_linear_model_with_mismatched_dict_inputs(self):
     model = linear.LinearModel()
     input_a = np.random.uniform(low=-5, high=5, size=(64, 1))
     input_b = np.random.uniform(low=-5, high=5, size=(64, 1))
     output = .3 * input_a + .2 * input_b
     model.compile('sgd', 'mse', [])
     model.build({
         'a': tf.TensorShape([None, 1]),
         'b': tf.TensorShape([None, 1])
     })
     with self.assertRaisesRegex(ValueError, 'Missing keys'):
         model.fit({'c': input_a, 'b': input_b}, output, epochs=5)
Esempio n. 12
0
 def test_linear_model_as_layer(self):
     input_a = input_layer.Input(shape=(1, ), name='a')
     output_a = linear.LinearModel()(input_a)
     input_b = input_layer.Input(shape=(1, ), name='b')
     output_b = core.Dense(units=1)(input_b)
     output = output_a + output_b
     model = training.Model(inputs=[input_a, input_b], outputs=[output])
     input_a_np = np.random.uniform(low=-5, high=5, size=(64, 1))
     input_b_np = np.random.uniform(low=-5, high=5, size=(64, 1))
     output_np = .3 * input_a_np + .2 * input_b_np
     model.compile('sgd', 'mse', [])
     model.fit([input_a_np, input_b_np], output_np, epochs=5)
Esempio n. 13
0
    def test_config_with_custom_objects(self):
        def my_activation(x):
            return x

        linear_model = linear.LinearModel(units=1)
        dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
        wide_deep_model = wide_deep.WideDeepModel(linear_model,
                                                  dnn_model,
                                                  activation=my_activation)
        config = wide_deep_model.get_config()
        cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(
            config, custom_objects={'my_activation': my_activation})
        self.assertEqual(cloned_wide_deep_model.activation, my_activation)
Esempio n. 14
0
 def test_linear_model_with_sparse_input(self):
     indices = tf.constant([[0, 0], [0, 2], [1, 0], [1, 1]], dtype=tf.int64)
     values = tf.constant([.4, .6, .8, .5])
     shape = tf.constant([2, 3], dtype=tf.int64)
     model = linear.LinearModel()
     inp = tf.SparseTensor(indices, values, shape)
     output = model(inp)
     self.evaluate(tf.compat.v1.global_variables_initializer())
     if tf.executing_eagerly():
         weights = model.get_weights()
         weights[0] = np.ones((3, 1))
         model.set_weights(weights)
         output = model(inp)
         self.assertAllClose([[1.], [1.3]], self.evaluate(output))
Esempio n. 15
0
 def test_wide_deep_model_with_single_optimizer(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     linear_inp = np.random.uniform(low=-5, high=5, size=(64, 2))
     dnn_inp = np.random.uniform(low=-5, high=5, size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = .3 * linear_inp[:, 0] + .2 * dnn_inp[:, 1]
     wide_deep_model.compile(optimizer='sgd',
                             loss='mse',
                             metrics=[],
                             run_eagerly=testing_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
     self.assertTrue(wide_deep_model.built)
Esempio n. 16
0
 def test_wide_deep_model(self, distribution, data_fn):
     with distribution.scope():
         linear_model = linear.LinearModel(units=1)
         dnn_model = sequential.Sequential([core.Dense(units=1)])
         wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
         linear_opt = gradient_descent.SGD(learning_rate=0.05)
         dnn_opt = adagrad.Adagrad(learning_rate=0.1)
         wide_deep_model.compile(optimizer=[linear_opt, dnn_opt],
                                 loss='mse')
         if data_fn == 'numpy':
             inputs, output = get_numpy()
             hist = wide_deep_model.fit(inputs, output, epochs=5)
         else:
             hist = wide_deep_model.fit(get_dataset(), epochs=5)
         self.assertLess(hist.history['loss'][4], 0.2)
Esempio n. 17
0
 def test_wide_deep_model_as_layer(self):
   linear_model = linear.LinearModel(units=1)
   dnn_model = sequential.Sequential([core.Dense(units=1)])
   linear_input = input_layer.Input(shape=(3,), name='linear')
   dnn_input = input_layer.Input(shape=(5,), name='dnn')
   wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
   wide_deep_output = wide_deep_model((linear_input, dnn_input))
   input_b = input_layer.Input(shape=(1,), name='b')
   output_b = core.Dense(units=1)(input_b)
   model = training.Model(
       inputs=[linear_input, dnn_input, input_b],
       outputs=[wide_deep_output + output_b])
   linear_input_np = np.random.uniform(low=-5, high=5, size=(64, 3))
   dnn_input_np = np.random.uniform(low=-5, high=5, size=(64, 5))
   input_b_np = np.random.uniform(low=-5, high=5, size=(64,))
   output_np = linear_input_np[:, 0] + .2 * dnn_input_np[:, 1] + input_b_np
   model.compile(
       optimizer='sgd',
       loss='mse',
       metrics=[],
       run_eagerly=testing_utils.should_run_eagerly())
   model.fit([linear_input_np, dnn_input_np, input_b_np], output_np, epochs=5)
Esempio n. 18
0
 def test_linear_model_with_feature_column(self):
     vocab_list = ['alpha', 'beta', 'gamma']
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = tf.feature_column.categorical_column_with_vocabulary_list(
         key='symbol', vocabulary_list=vocab_list)
     ind_column = tf.feature_column.indicator_column(cat_column)
     dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer='zeros')
     combined = sequential.Sequential([dense_feature_layer, linear_model])
     opt = gradient_descent.SGD(learning_rate=0.1)
     combined.compile(opt, 'mse', [])
     combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
     self.assertAllClose([[0.4], [0.6], [0.9]],
                         combined.layers[1].dense_layers[0].kernel.numpy(),
                         atol=0.01)
Esempio n. 19
0
    def test_linear_model_with_sparse_input_and_custom_training(self):
        batch_size = 64
        indices = []
        values = []
        target = np.zeros((batch_size, 1))
        for i in range(64):
            rand_int = np.random.randint(3)
            if rand_int == 0:
                indices.append((i, 0))
                val = np.random.uniform(low=-5, high=5)
                values.append(val)
                target[i] = 0.3 * val
            elif rand_int == 1:
                indices.append((i, 1))
                val = np.random.uniform(low=-5, high=5)
                values.append(val)
                target[i] = 0.2 * val
            else:
                indices.append((i, 0))
                indices.append((i, 1))
                val_1 = np.random.uniform(low=-5, high=5)
                val_2 = np.random.uniform(low=-5, high=5)
                values.append(val_1)
                values.append(val_2)
                target[i] = 0.3 * val_1 + 0.2 * val_2

        indices = np.asarray(indices)
        values = np.asarray(values)
        shape = tf.constant([batch_size, 2], dtype=tf.int64)
        inp = tf.SparseTensor(indices, values, shape)
        model = linear.LinearModel(use_bias=False)
        opt = gradient_descent.SGD()
        for _ in range(20):
            with tf.GradientTape() as t:
                output = model(inp)
                loss = backend.mean(losses.mean_squared_error(target, output))
            grads = t.gradient(loss, model.trainable_variables)
            grads_and_vars = zip(grads, model.trainable_variables)
            opt.apply_gradients(grads_and_vars)
Esempio n. 20
0
  def test_wide_deep_model_with_multi_outputs(self):
    inp = input_layer.Input(shape=(1,), name='linear')
    l = linear.LinearModel(units=2, use_bias=False)(inp)
    l1, l2 = tf.split(l, num_or_size_splits=2, axis=1)
    linear_model = training.Model(inp, [l1, l2])
    linear_model.set_weights([np.asarray([[0.5, 0.3]])])
    h = core.Dense(units=2, use_bias=False)(inp)
    h1, h2 = tf.split(h, num_or_size_splits=2, axis=1)
    dnn_model = training.Model(inp, [h1, h2])
    dnn_model.set_weights([np.asarray([[0.1, -0.5]])])
    wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
    inp_np = np.asarray([[1.]])
    out1, out2 = wide_deep_model(inp_np)
    # output should be (0.5 + 0.1), and (0.3 - 0.5)
    self.assertAllClose([[0.6]], out1)
    self.assertAllClose([[-0.2]], out2)

    wide_deep_model = wide_deep.WideDeepModel(
        linear_model, dnn_model, activation='relu')
    out1, out2 = wide_deep_model(inp_np)
    # output should be relu((0.5 + 0.1)), and relu((0.3 - 0.5))
    self.assertAllClose([[0.6]], out1)
    self.assertAllClose([[0.]], out2)
Esempio n. 21
0
 def test_config(self):
     linear_model = linear.LinearModel(units=3, use_bias=True)
     config = linear_model.get_config()
     cloned_linear_model = linear.LinearModel.from_config(config)
     self.assertEqual(linear_model.units, cloned_linear_model.units)