def plot_histogram(image):
    hist, bins = np.histogram(image.flatten(), 256, [0, 256])

    cdf = hist.cumsum()
    cdf_normalized = cdf * hist.max() / cdf.max()

    plt.plot(cdf_normalized, color='b')
    plt.hist(image.flatten(), 256, [0, 256], color='r')
    plt.xlim([0, 256])
    plt.legend(('cdf', 'histogram'), loc='upper left')
    plt.show()
    return
Esempio n. 2
0
def load_data(path):
    """
    TODO: Add documentation
    :param path:
    :return:
    """
    labels = []
    X = []
    y = []
    products = os.listdir(path)
    for i, product in enumerate(products):
        print("Product {} [{}/{}] loaded...".format(product, i + 1,
                                                    len(products)))
        labels.append(product)
        images = os.listdir(os.path.join(path, product))
        for filename in images:
            img = Image.open(os.path.join(path, product, filename))
            img.thumbnail((50, 50), Image.ANTIALIAS)
            image = np.array(img)
            image = image.flatten()
            X.append(image)
            y.append(i)

    X = np.array(X)
    y = np.array(y)
    return X, y, labels
Esempio n. 3
0
def prepare_image(img):
    from keras.preprocessing.image import img_to_array
    image = img_to_array(img)
    # Scale the image pixels by 255 (or use a scaler from sklearn here)
    image = 255 - (image)
    # Flatten into a 1x28*28 array
    image = image.flatten().reshape(-1, 28 * 28)
    return (image)
Esempio n. 4
0
def get_next_batch(batch_size=64):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    for i in range(batch_size):
        name, image = get_name_and_image()
        batch_x[i, :] = 1 * (image.flatten())
        batch_y[i, :] = name2vec(name)
    return batch_x, batch_y
Esempio n. 5
0
def prepare_image(image):
    if image.mode != "RGB":
        image = image.convert("RGB")
    image_size = (28, 28)
    image = image.resize(image_size)
    # image.save("fromform.png")
    image = img_to_array(image)[:, :, 0]
    image /= 255
    image = 1 - image
    return image.flatten().reshape(-1, 28 * 28)
def FrameClustering(FramePath):
 
    train_data = []
    train_labels_one_hot =[]
    trainfileList =[]
    
    for root, dirs, files in os.walk(FramePath):
        for file in files:
            if file.endswith(".jpg"):
                 fullName = os.path.join(root, file)
                 trainfileList.append(fullName)
    
    
    for imagePath in trainfileList:
        
        image = cv2.imread(imagePath)
        image = cv2.resize(image, (28, 28))
        image = img_to_array(image)
        image.ndim
        
        image = image.flatten()
        image /= 255
        train_data.append(image)
        #train_data /= 255
        
   
    print(image.shape)
    print(image.dtype)

    dfFrame = pd.DataFrame.from_records(train_data)
    dfFrame.shape

    #Kmeans to label poses  
    kmeans = KMeans(n_clusters=12)  
    kmeansoutput = kmeans.fit(dfFrame) 
    
    clusLabel = kmeans.predict(dfFrame)
    cluCenter = kmeans.cluster_centers_ 
    Lables = pd.DataFrame(clusLabel)
    dfFrame['Cluster'] = clusLabel
    #PCA for visulaisation
    
    pca = PCA(n_components=2)
    principalComponents = pca.fit_transform(dfFrame)
    principalDf = pd.DataFrame(data = principalComponents, columns = ['PCA1', 'PCA2'])
    
    pl.scatter(principalDf['PCA1'],principalDf['PCA2'], c=kmeansoutput.labels_,s=100)

    return dfFrame