Esempio n. 1
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1

        lr = K.switch(
            t <= self.warmup_steps,
            self.lr * (t / self.warmup_steps),
            self.lr *
            (1.0 - K.minimum(t, self.decay_steps) / self.decay_steps),
        )

        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, vhat_t))
            else:
                p_t = m_t / (K.sqrt(v_t) + self.epsilon)

            if self.initial_weight_decay > 0.0:
                if self.weight_decay_pattern is None:
                    p_t += self.weight_decay * p
                else:
                    for pattern in self.weight_decay_pattern:
                        if pattern in p.name:
                            p_t += self.weight_decay * p
                            break
            p_t = p - lr_t * p_t

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates
 def call(self, inputs, training=None):
     mean = K.mean(inputs, axis=-1, keepdims=True)
     variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
     std = K.sqrt(variance + self.epsilon)
     outputs = (inputs - mean) / std
     if self.scale:
         outputs *= self.gamma
     if self.center:
         outputs += self.beta
     return outputs
Esempio n. 3
0
 def call(self, inputs, mask=None, **kwargs):
     if isinstance(inputs, list):
         query, key, value = inputs
     else:
         query = key = value = inputs
     if isinstance(mask, list):
         mask = mask[1]
     feature_dim = K.shape(query)[-1]
     e = K.batch_dot(query, key, axes=2) / K.sqrt(
         K.cast(feature_dim, dtype=K.floatx()))
     if self.history_only:
         query_len, key_len = K.shape(query)[1], K.shape(key)[1]
         ones = tf.ones((query_len, key_len))
         e -= (ones - tf.matrix_band_part(ones, -1, 0)) * 1e9
     if mask is not None:
         e -= (1.0 - K.cast(K.expand_dims(mask, axis=-2), K.floatx())) * 1e9
     a = keras.activations.softmax(e)
     v = K.batch_dot(a, value)
     if self.return_attention:
         return [v, a]
     return v
Esempio n. 4
0
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1

        lr = K.switch(
            t <= self.warmup_steps,
            self.lr * (t / self.warmup_steps),
            self.min_lr + (self.lr - self.min_lr) *
            (1.0 - K.minimum(t, self.decay_steps) / self.decay_steps),
        )

        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                     (1. - K.pow(self.beta_1, t)))

        ms = [
            K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_{}'.format(i))
            for i, p in enumerate(params)
        ]
        vs = [
            K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_{}'.format(i))
            for i, p in enumerate(params)
        ]
        if self.amsgrad:
            vhats = [
                K.zeros(K.int_shape(p),
                        dtype=K.dtype(p),
                        name='vh_{}'.format(i)) for i, p in enumerate(params)
            ]
        else:
            vhats = [
                K.zeros(1, dtype=K.dtype(p), name='vh_{}'.format(i))
                for i, p in enumerate(params)
            ]
        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, vhat_t))
            else:
                p_t = m_t / (K.sqrt(v_t) + self.epsilon)

            if self.initial_weight_decay > 0.0:
                if self.weight_decay_pattern is None:
                    p_t += self.weight_decay * p
                else:
                    for pattern in self.weight_decay_pattern:
                        if pattern in p.name:
                            p_t += self.weight_decay * p
                            break

            mult_lr_t = lr_t
            if self.lr_mult is not None:
                key = p.name.split('/')
                if key[0] in self.lr_mult:
                    #print ("going in params : ", p.name, self.lr_mult[key[0]], K.eval(lr_t))
                    mult_lr_t *= self.lr_mult[key[0]]

            p_t = p - mult_lr_t * p_t

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates