def __init__(self, hyperParams=None): self.params = hyperParams hyperParams = { 'input': 16, 'l1_output': 4, 'l2_output': 4, 'output': 16, } p = hyperParams model = Sequential() model.add(Dense(p['input'], 5, init='uniform')) model.add(Activation('sigmoid')) model.add(Dropout(0.5)) # model.add(Dense(24, 4, init='uniform')) # model.add(Activation('tanh')) # model.add(Dropout(0.5)) model.add(Dense(5, p["output"])) model.add(Activation('softmax')) self.model = model self.compile()
def __init__(self, hyperParams=None): self.params = hyperParams p = self.params["model"] if(self.checkSavedModel()): return model = Sequential() embed_matrix = self.params["embedding"].getWord2VecMatrix() emb = Embedding( embed_matrix.shape[0], embed_matrix.shape[1], weights=[embed_matrix], mask_zero=True, # learn=(self.params["learn_embedding"] == 1) ) model.add(emb) srnn = SimpleRNN( input_dim=embed_matrix.shape[1], output_dim=embed_matrix.shape[0], activation='softmax', init='uniform', # inner_activation='hard_sigmoid', return_sequences=True, truncate_gradient=int(p.get("depth", -1)), ) print "Done" model.add(srnn) # model.add(Activation('softmax')) # model.add(LSTM(embed_matrix.shape[1], 128, activation='sigmoid', inner_activation='hard_sigmoid')) # model.add(Dropout(0.5)) # model.add(Dense(128, 1)) # model.add(Activation('sigmoid')) self.model = model # import pdb; pdb.set_trace() self.compile() self.saveModel()
def __init__(self, hyperParams=None): self.params = hyperParams if(self.checkSavedModel()): return p = self.params["model"] model = Sequential() embed_matrix = self.params["embedding"].getWord2VecMatrix() emb = Embedding( embed_matrix.shape[0], embed_matrix.shape[1], weights=[embed_matrix], mask_zero=True, # learn=(self.params["learn_embedding"] == 1) ) model.add(emb) srnn = SimpleDeepRNN( input_dim=embed_matrix.shape[1], output_dim=embed_matrix.shape[0], activation='softmax', init='uniform', inner_init='uniform', depth = int(p.get("depth", 3)), inner_activation='sigmoid', return_sequences=True, ) print "Done" model.add(srnn) self.model = model self.compile() self.saveModel()
def __init__(self, hyperParams=None): self.params = hyperParams if(self.checkSavedModel()): return p = self.params["model"] model = Sequential() embed_matrix = self.params["embedding"].getWord2VecMatrix() emb = Embedding( embed_matrix.shape[0], embed_matrix.shape[1], # weights=[embed_matrix], mask_zero=True, learn=(int(self.params["learn_embedding"]) == 1) ) emb.W.set_value(floatX(embed_matrix)) model.add(emb) print "Initialized Embeddings" srnn = SimpleRNN( input_dim=embed_matrix.shape[1], output_dim=int(p.get("hidden_nodes", 100)), activation='tanh', init='uniform', inner_init='uniform', # inner_activation='hard_sigmoid', return_sequences=False, truncate_gradient=int(p.get("depth", 3)), ) model.add(srnn) print "Initialized Recurrent Layer" denseL = Dense( input_dim=int(p.get("hidden_nodes", 100)), output_dim=int(p.get("output_nodes", 4)), activation='softmax', init='uniform', ) model.add(denseL) print "Initialized Dense Layer" self.model = model self.compile() self.model.layers[0].params = [self.model.layers[0].W] self.saveModel()
def __init__(self, embed_matrix): model = Sequential() # Add a mask_zero=True to the Embedding connstructor if 0 is a left-padding value in your data emb = Embedding(embed_matrix.shape[0], embed_matrix.shape[1], weights=[embed_matrix], mask_zero=True) model.add(emb) model.add(LSTM(embed_matrix.shape[1], 128, activation='sigmoid', inner_activation='hard_sigmoid')) model.add(Dropout(0.5)) model.add(Dense(128, 1)) model.add(Activation('sigmoid')) self.model = model self.compile()
def __init__(self, hyperParams=None): # if hyperParams == None : self.params = hyperParams hyperParams = { 'l1_input': 100, 'l1_output': 64, 'l2_output': 64, } p = hyperParams model = Sequential() model.add(Dense(p['l1_input'], 64, init='uniform')) model.add(Activation('tanh')) model.add(Dropout(0.5)) model.add(Dense(64, 64, init='uniform')) model.add(Activation('tanh')) model.add(Dropout(0.5)) model.add(Dense(64, 1)) model.add(Activation('sigmoid')) self.model = model self.compile()