Esempio n. 1
0
def create():
    global FLAG
    print("u" * 1000)
    print(request.data)
    print("u" * 1000)
    if (request.data == b'' and FLAG == 1):
        search_term = "#twitter"
        FLAG = 0
    else:
        request_data = json.loads(request.data)
        search_term = request_data['content']

    print(search_term)

    print(search_term)

    CONSUMER_KEY = "Nea50h6UNQ5MLH6DIiPKxTnaV"
    CONSUMER_SECRET = "VszNel95RlnGckBhV9gmKp1N1U92HdKZbTi3nmm9YOFDBcs1ki"
    ACCESS_TOKEN = "926179846253723648-PgHMZnAW2wf9ANOmEkLdGUPTmfBEVGP"
    ACCESS_TOKEN_SECRET = "SWbmV6apGGeApXr6yTwJU4LNJbNUIPt7AOZ4cjawl1o34"
    """consumer_key = os.environ.get('CONSUMER_KEY')
    consumer_secret = os.environ.get('CONSUMER_SECRET')
    access_token = os.environ.get('ACCESS_TOKEN')
    access_token_secret = os.environ.get('ACCESS_TOKEN_SECRET')"""

    consumer_key = CONSUMER_KEY
    consumer_secret = CONSUMER_SECRET
    access_token = ACCESS_TOKEN
    access_token_secret = ACCESS_TOKEN_SECRET

    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_token_secret)

    api = tweepy.API(auth)
    print(consumer_key)
    print("all good")

    tweets = api.search(search_term, count=500)

    data = pd.DataFrame(data=[tweet.text for tweet in tweets],
                        columns=['Tweets'])

    head = data.head(10)

    listy = []
    print("here 1" * 100)

    tweetList = [tweets for tweets in data['Tweets']]

    print("p" * 1000)
    print(tweetList)
    print("p" * 1000)

    print("here 5" * 100)
    scoreList = []
    labelList = []
    model = load_model("model.h5")

    for i in range(len(tweetList)):
        scoreList.append(str(round(model(tweetList[i]).polarity, 1)))
    print("here 6" * 100)
    for i in range(len(tweetList)):
        pLabel = 0
        print('0')
        scr = float(scoreList[i])
        print(scr)
        if (scr < -1 * 0.3):
            pLabel = "Negative"
        if (scr >= -1 * 0.3 and scr <= 0.3):
            pLabel = "Neutral"
        if (scr > 0.3):
            pLabel = "Positive"
        labelList.append(pLabel)

    global arr

    tempArr = []
    print("here 2" * 100)

    for i in range(len(tweetList)):
        print('heeee')
        print(tweetList[i])
        print(scoreList[i])
        print(labelList[i])
        tempArr.append({
            "id": i,
            "key_word": search_term,
            "tweet": tweetList[i],
            "score": scoreList[i],
            "label": labelList[i]
        })
        print(tweetList[i])

    arr = tempArr

    print("here 3" * 100)

    resp = jsonify(json.dumps(arr))
    resp.headers.add("Access-Control-Allow-Origin", "*")
    resp.status_code = 200

    return resp
Esempio n. 2
0
    # loop of the base directory
    for idx, target_dir in enumerate(dirs):
        print("\n===========================")
        print("[{idx}/{total}] {target_dir}".format(target_dir=target_dir,
                                                    idx=idx + 1,
                                                    total=len(dirs)))
        machine_type = os.path.split(target_dir)[1]

        print("============== MODEL LOAD ==============")
        # load model file
        model_file = "{model}/model_{machine_type}.hdf5".format(
            model=param["model_directory"], machine_type=machine_type)
        if not os.path.exists(model_file):
            com.logger.error("{} model not found ".format(machine_type))
            sys.exit(-1)
        model = keras_model.load_model(model_file)
        model.summary()

        # load anomaly score distribution for determining threshold
        score_distr_file_path = "{model}/score_distr_{machine_type}.pkl".format(
            model=param["model_directory"], machine_type=machine_type)
        shape_hat, loc_hat, scale_hat = joblib.load(score_distr_file_path)

        # determine threshold for decision
        decision_threshold = scipy.stats.gamma.ppf(
            q=param["decision_threshold"],
            a=shape_hat,
            loc=loc_hat,
            scale=scale_hat)

        if mode:
Esempio n. 3
0
def create():
    print("u" * 1000)
    print(request.data)
    print("u" * 1000)
    if (request.data == b''):
        search_term = "#twitter"
    else:
        request_data = json.loads(request.data)
        search_term = request_data['content']

    print(search_term)

    print(search_term)

    consumer_key = os.environ.get('CONSUMER_KEY')
    consumer_secret = os.environ.get('CONSUMER_SECRET')
    access_token = os.environ.get('ACCESS_TOKEN')
    access_token_secret = os.environ.get('ACCESS_TOKEN_SECRET')

    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_token, access_token_secret)

    api = tweepy.API(auth)

    tweets = api.search(search_term, count=500)

    data = pd.DataFrame(data=[tweet.text for tweet in tweets],
                        columns=['Tweets'])

    head = data.head(10)

    listy = []
    print("here 1" * 100)

    tweetList = [tweets for tweets in data['Tweets']]

    print("p" * 1000)
    print(tweetList)
    print("p" * 1000)

    print("here 5" * 100)
    scoreList = []
    labelList = []
    model = load_model("model.h5")

    for i in range(len(tweetList)):
        scoreList.append(str(round(model(tweetList[i]).polarity, 1)))
    print("here 6" * 100)
    for i in range(len(tweetList)):
        pLabel = 0
        print('0')
        scr = float(scoreList[i])
        print(scr)
        if (scr < -1 * 0.3):
            pLabel = "Negative"
        if (scr >= -1 * 0.3 and scr <= 0.3):
            pLabel = "Neutral"
        if (scr > 0.3):
            pLabel = "Positive"
        labelList.append(pLabel)

    global arr

    tempArr = []
    print("here 2" * 100)

    for i in range(len(tweetList)):
        print('heeee')
        print(tweetList[i])
        print(scoreList[i])
        print(labelList[i])
        tempArr.append({
            "id": i,
            "key_word": search_term,
            "tweet": tweetList[i],
            "score": scoreList[i],
            "label": labelList[i]
        })
        print(tweetList[i])

    arr = tempArr

    print("here 3" * 100)

    resp = jsonify(json.dumps(arr))
    resp.headers.add("Access-Control-Allow-Origin", "*")
    resp.status_code = 200

    return resp