Esempio n. 1
0
def evaluate(model=None,
             inp_images=None,
             annotations=None,
             inp_images_dir=None,
             annotations_dir=None,
             checkpoints_path=None):

    if model is None:
        assert (
            checkpoints_path
            is not None), "Please provide the model or the checkpoints_path"
        model = model_from_checkpoint_path(checkpoints_path)

    if inp_images is None:
        assert (inp_images_dir
                is not None), "Please privide inp_images or inp_images_dir"
        assert (annotations_dir
                is not None), "Please privide inp_images or inp_images_dir"

        paths = get_pairs_from_paths(inp_images_dir, annotations_dir)
        paths = list(zip(*paths))
        inp_images = list(paths[0])
        annotations = list(paths[1])

    assert type(inp_images) is list
    assert type(annotations) is list

    tp = np.zeros(model.n_classes)
    fp = np.zeros(model.n_classes)
    fn = np.zeros(model.n_classes)
    n_pixels = np.zeros(model.n_classes)

    for inp, ann in tqdm(zip(inp_images, annotations)):
        pr = predict(model, inp)
        gt = get_segmentation_array(ann,
                                    model.n_classes,
                                    model.output_width,
                                    model.output_height,
                                    no_reshape=True)
        gt = gt.argmax(-1)
        pr = pr.flatten()
        gt = gt.flatten()

        for cl_i in range(model.n_classes):

            tp[cl_i] += np.sum((pr == cl_i) * (gt == cl_i))
            fp[cl_i] += np.sum((pr == cl_i) * ((gt != cl_i)))
            fn[cl_i] += np.sum((pr != cl_i) * ((gt == cl_i)))
            n_pixels[cl_i] += np.sum(gt == cl_i)

    cl_wise_score = tp / (tp + fp + fn + 0.000000000001)
    n_pixels_norm = n_pixels / np.sum(n_pixels)
    frequency_weighted_IU = np.sum(cl_wise_score * n_pixels_norm)
    mean_IU = np.mean(cl_wise_score)
    return {
        "frequency_weighted_IU": frequency_weighted_IU,
        "mean_IU": mean_IU,
        "class_wise_IU": cl_wise_score
    }
Esempio n. 2
0
def seg2ann(seg_dir, ann_dir):
    data = pd.read_csv('./PSPindexClass.csv')
    cols = ['Idx', 'Ratio', 'Train', 'Val', 'Stuff', 'Name']
    CNames = np.empty(150, dtype=np.object)
    for k in range(150):
        CNames[k] = data['Name'].iloc[k]

    seg_file = glob.glob(os.path.join(seg_dir, "*.png"))
    for i, seg_file in enumerate(tqdm(seg_file)):
        if isinstance(seg_file, six.string_types):
            out_fname = os.path.basename(seg_file)
            file, ext = os.path.splitext(out_fname)
            fout = open(ann_dir + file + ".txt", "w")

            seg_labels = get_segmentation_array(seg_file,
                                                150,
                                                473,
                                                473,
                                                no_reshape=True)

            CN = np.empty(150, dtype=np.object)
            for i in range(CN.shape[0]):
                CN[i] = []
            xsumavg = np.zeros(150)
            ysumavg = np.zeros(150)

            for k in range(150):
                CN[k].append(k + 1)  # class num CN[k][0]
                CN[k].append(0)  # classs val CN[k][1]
                CN[k][1] = np.sum(seg_labels[:, :, k], axis=(0, 1))
                if CN[k][1] > 0:
                    for i in range(473):
                        for j in range(473):
                            if (seg_labels[i, j, k]) == 1:
                                xsumavg[k] = xsumavg[k] + j
                                ysumavg[k] = ysumavg[k] + i

                    xsumavg[k] = xsumavg[k] / CN[k][1]
                    ysumavg[k] = ysumavg[k] / CN[k][1]

            CDict = {}
            for k in range(150):
                if CN[k][1] != 0:
                    centroidx = xsumavg[k]
                    centroidy = ysumavg[k]
                    CDict[CN[k][1]] = [
                        "{:3d}".format(CN[k][0]),
                        "{:08d}".format(CN[k][1].astype(int)),
                        "{:04d}".format(centroidx.astype(int)),
                        "{:04d}".format(centroidy.astype(int)), CNames[k]
                    ]
            fout.write(
                "classnum, classval,  centroidx, centroidy, classname\n")
            for key in sorted(CDict.keys(), reverse=True):
                if key != 0:
                    listToStr = ','.join(map(str, CDict[key]))
                    fout.write(listToStr + '\n')
            fout.close()
Esempio n. 3
0
def seg2ann(seg_file):
    try:
        data = pd.read_csv('./PSPindexClass.csv')
    except Exception as e:
        print(e)
        return {}
    cols = ['Idx', 'Ratio', 'Train', 'Val', 'Stuff', 'Name']
    CNames = np.empty(150, dtype=np.object)
    for k in range(150):
        CNames[k] = data['Name'].iloc[k]

    seg_labels = get_segmentation_array(seg_file,
                                        150,
                                        473,
                                        473,
                                        no_reshape=True)

    CN = np.empty(150, dtype=np.object)
    for i in range(CN.shape[0]):
        CN[i] = []
    xsumavg = np.zeros(150)
    ysumavg = np.zeros(150)
    xsum = 0
    ysum = 0

    for k in range(150):
        CN[k].append(k + 1)  # class num
        CN[k].append(0)  # classs val CN[1]
        CN[k][1] = np.sum(seg_labels[:, :, k], axis=(0, 1))
        if CN[k][1] > 0:
            for i in range(473):
                for j in range(473):
                    if (seg_labels[i, j, k]) == 1:
                        xsumavg[k] = xsumavg[k] + j
                        ysumavg[k] = ysumavg[k] + i

            xsumavg[k] = xsumavg[k] / CN[k][1]
            ysumavg[k] = ysumavg[k] / CN[k][1]

    CDict = {}
    for k in range(150):
        if CN[k][1] != 0:
            centroidx = xsumavg[k]
            centroidy = ysumavg[k]
            CDict[CN[k][1]] = [(CN[k][0]), (CN[k][1].astype(int)), CNames[k]]

    return CDict
Esempio n. 4
0
def image_segm_depth_generator(images_path,
                               segs_path,
                               depth_path,
                               batch_size,
                               n_classes,
                               input_height,
                               input_width,
                               output_height,
                               output_width,
                               do_augment=False):
    img_seg_depth_pairs = get_triplets_from_paths(images_path, segs_path,
                                                  depth_path)
    random.shuffle(img_seg_depth_pairs)
    zipped = itertools.cycle(img_seg_depth_pairs)

    while True:
        X = []
        Y = []
        Y_segm = []
        Y_depth = []
        for _ in range(batch_size):
            im, seg, depth = next(zipped)

            im = cv2.imread(im, 1)
            seg = cv2.imread(seg, 1)
            depth = cv2.imread(depth, 1)

            if do_augment:
                im, seg[:, :, 0] = augment_seg(im, seg[:, :, 0])

            X.append(
                get_image_array(im,
                                input_width,
                                input_height,
                                ordering=IMAGE_ORDERING))
            Y_segm.append(
                get_segmentation_array(seg, n_classes, output_width,
                                       output_height))
            Y_depth.append(get_depth_array(depth, output_width, output_height))

        yield np.array(X), {
            "segm_pred": np.array(Y_segm),
            "depth_pred": np.array(Y_depth)
        }
Esempio n. 5
0
def evaluate_depth_segm(model=None,
                        inp_images_dir=None,
                        segm_annotations_dir=None,
                        depth_annotations_dir=None,
                        checkpoints_path=None):
    if model is None:
        assert (
            checkpoints_path
            is not None), "Please provide the model or the checkpoints_path"
        model = unet_model_from_checkpoint_path(checkpoints_path)

    paths = get_triplets_from_paths(inp_images_dir, segm_annotations_dir,
                                    depth_annotations_dir)
    paths = list(zip(*paths))
    inp_images = list(paths[0])
    segm_annotations = list(paths[1])
    depth_annotations = list(paths[2])

    assert type(inp_images) is list
    assert type(segm_annotations) is list
    assert type(depth_annotations) is list
    tp = np.zeros(model.n_classes)
    fp = np.zeros(model.n_classes)
    fn = np.zeros(model.n_classes)

    mean_abs_err_arr = []
    depth_acc_125_arr = []
    depth_acc_125_2_arr = []
    depth_acc_125_3_arr = []

    n_pixels = np.zeros(model.n_classes)

    for inp, segm_ann, depth_ann in tqdm(
            zip(inp_images, segm_annotations, depth_annotations)):
        segm_pr, depth_pr = model.predict_segmentation(inp)

        segm_gt = get_segmentation_array(segm_ann,
                                         model.n_classes,
                                         model.output_width,
                                         model.output_height,
                                         no_reshape=True)

        segm_gt = segm_gt.argmax(-1)

        segm_pr = segm_pr.flatten()
        segm_gt = segm_gt.flatten()

        depth_gt = get_depth_array(depth_ann, model.output_width,
                                   model.output_height)

        depth_pr = depth_pr.flatten()
        depth_gt = depth_gt.flatten()
        depth_pr = 1 - depth_pr

        depth_pr[depth_pr > MAX_DEPTH] = MAX_DEPTH
        depth_pr[depth_pr < MIN_DEPTH] = MIN_DEPTH
        depth_gt[depth_gt > MAX_DEPTH] = MAX_DEPTH
        depth_gt[depth_gt < MIN_DEPTH] = MIN_DEPTH

        depth_acc_125 = depth_accuracy(depth_pr, depth_gt, threshold=1.25)
        depth_acc_125_2 = depth_accuracy(depth_pr, depth_gt, threshold=1.25**2)
        depth_acc_125_3 = depth_accuracy(depth_pr, depth_gt, threshold=1.25**3)

        depth_acc_125_arr.append(np.mean(depth_acc_125))
        depth_acc_125_2_arr.append(np.mean(depth_acc_125_2))
        depth_acc_125_3_arr.append(np.mean(depth_acc_125_3))

        mean_abs_err = metrics.mean_absolute_error(depth_pr, depth_gt)
        mean_abs_err_arr.append(mean_abs_err)

        for cl_i in range(model.n_classes):
            tp[cl_i] += np.sum((segm_pr == cl_i) * (segm_gt == cl_i))
            fp[cl_i] += np.sum((segm_pr == cl_i) * ((segm_gt != cl_i)))
            fn[cl_i] += np.sum((segm_pr != cl_i) * ((segm_gt == cl_i)))
            n_pixels[cl_i] += np.sum(segm_gt == cl_i)

    mean_abs_err = np.mean(np.array(mean_abs_err_arr))
    depth_acc_125 = np.mean(np.array(depth_acc_125_arr))
    depth_acc_125_2 = np.mean(np.array(depth_acc_125_2_arr))
    depth_acc_125_3 = np.mean(np.array(depth_acc_125_3_arr))
    cl_wise_score = tp / (tp + fp + fn + 0.000000000001)
    n_pixels_norm = n_pixels / np.sum(n_pixels)
    frequency_weighted_IU = np.sum(cl_wise_score * n_pixels_norm)
    mean_IU = np.mean(cl_wise_score)
    return {
        "frequency_weighted_IU": frequency_weighted_IU,
        "mean_IU": mean_IU,
        "class_wise_IU": cl_wise_score,
        "depth_acc_125": depth_acc_125,
        "depth_acc_125_2": depth_acc_125_2,
        "depth_acc_125_3": depth_acc_125_3,
        "mean_abs_err": mean_abs_err
    }