Esempio n. 1
0
def test_update_b_single_equals_batch():
    N = 100
    D = 3
    m = 10
    omega = np.random.randn(D, m)
    u = np.random.uniform(0, 2 * np.pi, m)
    X = np.random.randn(N, D)
    x = np.random.randn(D)

    b = compute_b(X, omega, u)
    b = update_b_single(x, b, n=N, omega=omega, u=u)
    b_batch = compute_b(np.vstack((X, x)), omega, u)

    assert_allclose(b, b_batch)
Esempio n. 2
0
def test_update_b_single_equals_compute_b_when_initialised_correctly():
    sigma = 1.
    N = 200
    D = 2
    m = 10
    X = np.random.randn(N, D)

    # basis
    omega, u = rff_sample_basis(D, m, sigma)

    # initial fit and update
    b_update = np.zeros(m)
    n_update = m
    for x in X:
        b_update = update_b_single(x, b_update, n_update, omega, u)
        n_update += 1

    # initial fit and batch (average of "fake" b and new observations
    b_fake = np.zeros(m)
    n_fake = m
    b_batch = (b_fake * n_fake + compute_b(X, omega, u) * N) / (n_fake + N)

    assert_allclose(b_update, b_batch)