Esempio n. 1
0
class KernelExpFiniteGaussianSurrogate(StaticSurrogate):
    def __init__(self, ndim, sigma, lmbda, m):
        self.surrogate = KernelExpFiniteGaussian(sigma, lmbda, m, D=ndim)

    def train(self, samples):
        self.surrogate.fit(samples)

    def log_pdf_gradient(self, x):
        return self.surrogate.grad(x)
Esempio n. 2
0
def test_KernelExpFiniteGaussian_fit_exactly_m_data_execute():
    sigma = 1.
    lmbda = 1.
    m = 2
    N = m
    D = 2
    est = KernelExpFiniteGaussian(sigma, lmbda, m, D)

    X = np.random.randn(N, D)
    est.fit(X)
Esempio n. 3
0
    def get_KernelAdaptiveLangevin_instance(D, target_log_pdf):
        step_size = 1.
        m = 500
        
        surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=1., m=m, D=D)
        logger.info("kernel exp family uses %s" % surrogate.get_parameters())
        
        instance = KernelAdaptiveLangevin(D, target_log_pdf, surrogate, step_size)

        return instance
Esempio n. 4
0
def test_KernelExpFiniteGaussian_fit_less_than_m_data_execute():
    sigma = 1.
    lmbda = 1.
    m = 20
    N = 10
    D = 2
    est = KernelExpFiniteGaussian(sigma, lmbda, m, D)

    X = np.random.randn(N, D)
    est.fit(X)
Esempio n. 5
0
    def get_OracleKernelAdaptiveLangevin_instance(D, target_log_pdf):
        step_size = 1.
        m = 500
        N = 5000
        Z = sample_banana(N, D, bananicity, V)

        surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=.001, m=m, D=D)
        surrogate.fit(Z)

        if False:
            param_bounds = {'sigma': [-2, 3]}
            bo = BayesOptSearch(surrogate, Z, param_bounds)
            best_params = bo.optimize()
            surrogate.set_parameters_from_dict(best_params)

        if False:
            sigma = 1. / gamma_median_heuristic(Z)
            surrogate.set_parameters_from_dict({'sigma': sigma})

        logger.info("kernel exp family uses %s" % surrogate.get_parameters())

        if False:
            import matplotlib.pyplot as plt
            Xs = np.linspace(-30, 30, 50)
            Ys = np.linspace(-20, 40, 50)
            visualise_fit_2d(surrogate, Z, Xs, Ys)
            plt.show()

        instance = OracleKernelAdaptiveLangevin(D, target_log_pdf, surrogate,
                                                step_size)

        return instance
Esempio n. 6
0
    def get_KernelAdaptiveLangevin_instance(D, target_log_pdf):
        step_size = 1.
        m = 500

        surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=1., m=m, D=D)
        logger.info("kernel exp family uses %s" % surrogate.get_parameters())

        instance = KernelAdaptiveLangevin(D, target_log_pdf, surrogate,
                                          step_size)

        return instance
Esempio n. 7
0
 def get_OracleKernelAdaptiveLangevin_instance(D, target_log_pdf):
     step_size = 1.
     m = 500
     N = 5000
     Z = sample_banana(N, D, bananicity, V)
     
     surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=.001, m=m, D=D)
     surrogate.fit(Z)
     
     if False:
         param_bounds = {'sigma': [-2, 3]}
         bo = BayesOptSearch(surrogate, Z, param_bounds)
         best_params = bo.optimize()
         surrogate.set_parameters_from_dict(best_params)
     
     if False:
         sigma = 1. / gamma_median_heuristic(Z)
         surrogate.set_parameters_from_dict({'sigma': sigma})
     
     logger.info("kernel exp family uses %s" % surrogate.get_parameters())
 
     if False:
         import matplotlib.pyplot as plt
         Xs = np.linspace(-30, 30, 50)
         Ys = np.linspace(-20, 40, 50)
         visualise_fit_2d(surrogate, Z, Xs, Ys)
         plt.show()
         
     instance = OracleKernelAdaptiveLangevin(D, target_log_pdf, surrogate, step_size)
     
     return instance
Esempio n. 8
0
def test_KernelExpFiniteGaussian_fit_equals_update_fit():
    sigma = 1.
    lmbda = 2.
    m = 2
    N = 1
    D = 2

    rng_state = np.random.get_state()

    np.random.seed(0)
    est_batch = KernelExpFiniteGaussian(sigma, lmbda, m, D)
    np.random.seed(0)
    est_update = KernelExpFiniteGaussian(sigma, lmbda, m, D)

    np.random.set_state(rng_state)

    assert_equal(est_batch.b, None)
    assert_equal(est_update.b, None)
    assert_equal(est_batch.L_C, None)
    assert_allclose(est_batch.n, est_update.n)

    assert_allclose(est_batch.theta, np.zeros(m))
    assert_allclose(est_update.theta, np.zeros(m))

    X = np.random.randn(N, D)
    est_batch.fit(X)

    est_update.update_fit(X)

    assert_allclose(est_batch.b, est_update.b)
    assert_allclose(est_batch.L_C, est_update.L_C)
    assert_allclose(est_batch.n, est_update.n)
    assert_allclose(est_batch.theta, est_update.theta)
def get_OracleKernelAdaptiveLangevin_instance(D, target_log_pdf, grad):
    
    step_size = 1.
    schedule = one_over_sqrt_t_schedule
    acc_star = 0.574
    N = 500
    m = 500
    Z = sample_banana(N=N, D=D, bananicity=0.03, V=100)
    
    surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=1., m=m, D=D)
    surrogate.fit(Z)
    
    instance = OracleKernelAdaptiveLangevin(D, target_log_pdf, surrogate, step_size, schedule, acc_star)
    
    return instance
def get_KernelAdaptiveLangevin_instance(D, target_log_pdf, grad):
    step_size = 1.
    schedule = one_over_sqrt_t_schedule
    acc_star = 0.574
    m = 500
    
    surrogate = KernelExpFiniteGaussian(sigma=10, lmbda=1., m=m, D=D)
    instance = KernelAdaptiveLangevin(D, target_log_pdf, surrogate, step_size, schedule, acc_star)
    
    return instance
Esempio n. 11
0
    def get_OracleKernelAdaptiveLangevin_instance(D, target_log_pdf):
        step_size = 0.002
        m = 1000

        sigma = 0.7
        lmbda = 1.

        surrogate = KernelExpFiniteGaussian(sigma=sigma, lmbda=lmbda, m=m, D=D)

        logger.info("Fitting kernel exp family in batch mode")
        instance = OracleKernelAdaptiveLangevin(D, target_log_pdf, surrogate,
                                                step_size)
        instance.set_batch(benchmark_samples)

        return instance
Esempio n. 12
0
    def get_KernelAdaptiveLangevin_instance(D, target_log_pdf):
        step_size = 0.002
        m = 1000

        sigma = 0.7
        lmbda = 1.

        surrogate = KernelExpFiniteGaussian(sigma=sigma, lmbda=lmbda, m=m, D=D)

        instance = KernelAdaptiveLangevin(D, target_log_pdf, surrogate,
                                          step_size)

        # feed a small number of pilot samples into algorithm
        instance.set_batch(benchmark_samples[:num_initial_oracle])

        return instance
Esempio n. 13
0
def test_hessian_execute():
    if not theano_available:
        raise SkipTest("Theano not available.")
    sigma = 1.
    lmbda = 1.
    N = 100
    D = 2
    m = 10
    X = np.random.randn(N, D)

    est = KernelExpFiniteGaussian(sigma, lmbda, m, D)
    est.fit(X)
    est.hessian(X[0])
Esempio n. 14
0
def test_third_order_derivative_tensor_execute():
    if not theano_available:
        raise SkipTest("Theano not available.")
    sigma = 1.
    lmbda = 1.
    N = 100
    D = 2
    m = 10
    X = np.random.randn(N, D)

    est = KernelExpFiniteGaussian(sigma, lmbda, m, D)
    est.fit(X)
    est.third_order_derivative_tensor(X[0])
Esempio n. 15
0
    # run MCMC
    samples, proposals, accepted, acc_prob, log_pdf, times, step_sizes = mini_mcmc(
        kmc, start, num_iter, D)

    visualise_trace(samples,
                    log_pdf,
                    accepted,
                    log_pdf_density=surrogate,
                    step_sizes=step_sizes)
    plt.suptitle("KMC lite %s, acceptance rate: %.2f" % \
                 (surrogate.__class__.__name__, np.mean(accepted)))

    # now initialise KMC finite with the samples from the surrogate, and run for more
    # learn parameters before starting
    thinned = samples[np.random.permutation(len(samples))[:N]]
    surrogate2 = KernelExpFiniteGaussian(sigma=2, lmbda=0.001, D=D, m=N)
    surrogate2.set_parameters_from_dict(
        BayesOptSearch(surrogate2, thinned, {
            'sigma': [-3, 3]
        }).optimize(3))
    surrogate2.fit(thinned)

    # now use conservative schedule, or None at all if confident in oracle samples
    schedule2 = lambda t: 0.01 if t < 3000 else 0.
    kmc2 = KMC(surrogate2, target, momentum, kmc.num_steps_min,
               kmc.num_steps_max, kmc.step_size[0], kmc.step_size[1],
               schedule2, acc_star)

    # run MCMC
    samples2, proposals2, accepted2, acc_prob2, log_pdf2, times2, step_sizes = mini_mcmc(
        kmc2, start, num_iter, D)
Esempio n. 16
0
    # possible to change
    # for D=2, the fitted log-density is plotted, otherwise trajectory only
    D = 2
    N = 1000

    # target is banana density, fallback to Gaussian if theano is not present
    if banana_available:
        target = Banana(D=D)
        X = sample_banana(N, D)
    else:
        target = IsotropicZeroMeanGaussian(D=D)
        X = sample_gaussian(N=N)

    # plot trajectories for both KMC lite and finite, parameters are chosen for D=2
    for surrogate in [
            KernelExpFiniteGaussian(sigma=2, lmbda=0.001, m=N, D=D),
            KernelExpLiteGaussian(sigma=20., lmbda=0.001, D=D, N=N),
            KernelExpLiteGaussianLowRank(sigma=20,
                                         lmbda=0.1,
                                         D=D,
                                         N=N,
                                         cg_tol=0.01),
    ]:
        # try uncommenting this line to illustrate KMC's ability to mix even
        # when no (or incomplete) samples from the target are available
        surrogate.fit(X)

        # HMC parameters, fixed here, use oracle mean variance to set momentum
        momentum = IsotropicZeroMeanGaussian(D=D,
                                             sigma=np.sqrt(
                                                 np.mean(np.var(X, 0))))
 N_fit = 50000
 ms_fit = np.array([1, 2, 5, 10, 25, 50, 75, 100, 250, 500, 1000, 2000, 5000])
 
 sigma = 1
 lmbda = 0.01
 
 grad = lambda x: est.grad(np.array([x]))[0]
 s =  GaussianQuadraticTest(grad)
 num_bootstrap = 200
 
 result_fname = os.path.splitext(os.path.basename(__file__))[0] + ".txt"
 
 num_repetitions = 150
 for _ in range(num_repetitions):
     for m in ms_fit:
         est = KernelExpFiniteGaussian(sigma, lmbda, m, D)
         X_test = np.random.randn(N_test, D)
         
         X = np.random.randn(N_fit, D)
         est.fit(X)
         
         U_matrix, stat = s.get_statistic_multiple(X_test[:,0])
     
         bootsraped_stats = np.empty(num_bootstrap)
         for i in range(num_bootstrap):
             W = np.sign(np.random.randn(N_test))
             WW = np.outer(W, W)
             st = np.mean(U_matrix * WW)
             bootsraped_stats[i] = N_test * st
         
         p_value = np.mean(bootsraped_stats>stat)
 
 m = 1000
 
 lmbda = 1.
 res = 10
 log2_sigmas = np.linspace(-4, 10, res)
 log2_sigmas = np.log2([0.5, 0.7, 0.9, 1.1, 1.3, 1.5])
 
 print "log2_sigmas:", log2_sigmas
 print "sigmas:", 2 ** log2_sigmas
 Js_mean = np.zeros(res)
 Js_var = np.zeros(res)
 
 for i, log2_sigma in enumerate(log2_sigmas):
     sigma = 2 ** log2_sigma
     surrogate = KernelExpFiniteGaussian(sigma=sigma, lmbda=lmbda, m=m, D=benchmark_samples.shape[1])
     vals = surrogate.xvalidate_objective(benchmark_samples)
     Js_mean[i] = np.mean(vals)
     Js_var[i] = np.var(vals)
     print "log2_sigma: %.3f, sigma: %.3f, mean: %.3f, var: %.3f" % (log2_sigma, sigma, Js_mean[i], Js_var[i])
     
     surrogate = KernelExpFiniteGaussian(sigma=sigma, lmbda=lmbda, m=m, D=benchmark_samples.shape[1])
     surrogate.fit(benchmark_samples)
     fake = empty_class()
     
     def replace_2(x_2d, a, i, j):
         a = a.copy()
         a[i] = x_2d[0]
         a[j] = x_2d[1]
         return a
         
Esempio n. 19
0
def get_instace_KernelExpFiniteGaussian(N):
    sigma = 2.
    lmbda = 2.
    D = 2
    m = 2
    return KernelExpFiniteGaussian(sigma, lmbda, m, D)
Esempio n. 20
0
    m = 1000

    lmbda = 1.
    res = 10
    log2_sigmas = np.linspace(-4, 10, res)
    log2_sigmas = np.log2([0.5, 0.7, 0.9, 1.1, 1.3, 1.5])

    print "log2_sigmas:", log2_sigmas
    print "sigmas:", 2**log2_sigmas
    Js_mean = np.zeros(res)
    Js_var = np.zeros(res)

    for i, log2_sigma in enumerate(log2_sigmas):
        sigma = 2**log2_sigma
        surrogate = KernelExpFiniteGaussian(sigma=sigma,
                                            lmbda=lmbda,
                                            m=m,
                                            D=benchmark_samples.shape[1])
        vals = surrogate.xvalidate_objective(benchmark_samples)
        Js_mean[i] = np.mean(vals)
        Js_var[i] = np.var(vals)
        print "log2_sigma: %.3f, sigma: %.3f, mean: %.3f, var: %.3f" % (
            log2_sigma, sigma, Js_mean[i], Js_var[i])

        surrogate = KernelExpFiniteGaussian(sigma=sigma,
                                            lmbda=lmbda,
                                            m=m,
                                            D=benchmark_samples.shape[1])
        surrogate.fit(benchmark_samples)
        fake = empty_class()

        def replace_2(x_2d, a, i, j):
    Then, increasing amounts of "correct" data are added and the fits are
    visualised.
    """
    N = 50
    D = 2
    
    # fit model to samples from a wrong Gaussian, to see updates later
    X = np.random.randn(N, D) * 10
    
    # arbitrary choice of parameters here
    # note that m is set to N in order to call update_fit immediately,
    # as throws an error if called with less data
    sigma = 2
    lmbda = 1.
    m = N
    est = KernelExpFiniteGaussian(sigma, lmbda, m, D)

    # only for plotting
    all_data = []
    
    # plotting grid
    width = 6
    Xs = np.linspace(-width, width, 50)
    Ys = np.linspace(-width, width, 50)

    # plot ground truth
    plt.figure(figsize=(10, 10))
    fig_count = 1
    plt.subplot(3, 3, fig_count)
    _, G_true = pdf_grid(Xs, Ys, ground_truth())
    visualise_array(Xs, Ys, G_true)
Esempio n. 22
0
def get_KernelExpFiniteGaussian_instance(D):
    # arbitrary choice of parameters here
    sigma = 2
    lmbda = 1
    m = 100
    return KernelExpFiniteGaussian(sigma, lmbda, m, D)
Esempio n. 23
0
 def __init__(self, ndim, sigma, lmbda, m):
     self.surrogate = KernelExpFiniteGaussian(sigma, lmbda, m, D=ndim)
    This simple demo demonstrates how to select the kernel parameter for the lite
    estimator, based on a Bayesian optimisation black-box optimiser.
    Note that this optimiser can be "hot-started", i.e. it can be reset, but using
    the previous model as initialiser for the new optimisation, which is useful
    when the objective function changes slightly, e.g. when a new data was added
    to the kernel exponential family model.
    """
    N = 200
    D = 2

    # fit model to samples from a standard Gaussian
    X = np.random.randn(N, D)

    # use any of the below models, might have to change parameter bounds
    estimators = [
        KernelExpFiniteGaussian(sigma=1., lmbda=1., m=N, D=D),
        KernelExpLiteGaussian(sigma=1., lmbda=.001, D=D, N=N),
    ]

    for est in estimators:
        print(est.__class__.__name__)

        est.fit(X)

        # specify bounds of parameters to search for
        param_bounds = {
            #             'lmbda': [-5,0], # fixed lmbda, uncomment to include in search
            'sigma': [-2, 3],
        }

        # oop interface for optimising and using results
    # set to around 5000-10000 iterations to have KMC lite explored all of the support
    start = np.zeros(D)
    start[1] = -3
    num_iter = 500
    
    # run MCMC
    samples, proposals, accepted, acc_prob, log_pdf, times, step_sizes = mini_mcmc(kmc, start, num_iter, D)
    
    visualise_trace(samples, log_pdf, accepted, log_pdf_density=surrogate, step_sizes=step_sizes)
    plt.suptitle("KMC lite %s, acceptance rate: %.2f" % \
                 (surrogate.__class__.__name__, np.mean(accepted)))
    
    # now initialise KMC finite with the samples from the surrogate, and run for more
    # learn parameters before starting
    thinned = samples[np.random.permutation(len(samples))[:N]]
    surrogate2 = KernelExpFiniteGaussian(sigma=2, lmbda=0.001, D=D, m=N)
    surrogate2.set_parameters_from_dict(BayesOptSearch(surrogate2, thinned, {'sigma': [-3,3]}).optimize(3))
    surrogate2.fit(thinned)
    
    # now use conservative schedule, or None at all if confident in oracle samples
    schedule2 = lambda t: 0.01 if t < 3000 else 0.
    kmc2 = KMC(surrogate2, target,
              momentum, kmc.num_steps_min, kmc.num_steps_max, kmc.step_size[0], kmc.step_size[1],
              schedule2, acc_star)

    # run MCMC
    samples2, proposals2, accepted2, acc_prob2, log_pdf2, times2, step_sizes = mini_mcmc(kmc2, start, num_iter, D)
    visualise_trace(samples2, log_pdf2, accepted2, log_pdf_density=surrogate2, step_sizes=step_sizes)
    plt.suptitle("KMC finite, %s, acceptance rate: %.2f" % \
                 (surrogate.__class__.__name__, np.mean(accepted2)))
    plt.show()