def do_report(index, k): b1_data = read_res_file(B1_RES_FILE) a2_data = read_res_file(A2_RES_FILE) process_k(k, b1_data, a2_data, index)
def main(index = DEFAULT_INDEX): b1_res = read_res_file(B1_RES_FILE) a2_res = read_res_file(A2_RES_FILE) if len(b1_res) and len(a2_res): cldat = ClDat() if cldat.loaded: b1_hist = gen_hist(b1_res, cldat.b1, HIST_FILE_B1, TYPE_1_COL) a2_hist = gen_hist(a2_res, cldat.a2, HIST_FILE_A2, TYPE_2_COL) if index != DEFAULT_INDEX: success, k, pro, pre, p = load_local_data(index, cl.b1, cl.a2) if success: generate_final_hist(index, b1_hist, a2_hist, k, pro, pre, p, cldat) else: print "ERROR: Generation of historical not possible, local data not available." else: print "ERROR: Generation of historical not possible, cl not available." else: print "ERROR: Generation of historical not possible, res not available."
def do_report(index, k, cl, pred_rf, pre, ex_mean): print "Generating report ..." b1_data = read_res_file(B1_RES_FILE) a2_data = read_res_file(A2_RES_FILE) process_k(k, b1_data, a2_data, cl, index, pred_rf, pre, ex_mean)
def generate_hist(index, cl, k, pro, pre, p): b1_res = read_res_file(B1_RES_FILE) a2_res = read_res_file(A2_RES_FILE) if len(b1_res) and len(a2_res): b1_hist = gen_hist(b1_res, cl.b1, HIST_FILE_B1, TYPE_1_COL) a2_hist = gen_hist(a2_res, cl.a2, HIST_FILE_A2, TYPE_2_COL) generate_final_hist(index, b1_hist, a2_hist, k, pro, pre, p, cl) else: print "ERROR: Generation of historical not possible, res not available."
def _calc_from_res(self, res_file_name, cl_data): final_dif = {} cl_dict = self._dict_from_cl(cl_data) res = read_res_file(res_file_name) for r in res: name1 = r[R_NAME_1_COL] name2 = r[R_NAME_2_COL] m = r[R_M_COL] dif = cl_dict[name1] - cl_dict[name2] sum = SUM_DIF_POS[m] try: val = final_dif[dif] new_val = [ val[i] + sum[i] for i in range(len(val))] final_dif.update( {dif: new_val} ) except KeyError: final_dif.update( {dif: sum} ) return final_dif
def main(): clda = ClDat() if clda.loaded: b1_res = read_res_file(B1_RES_FILE) a2_res = read_res_file(A2_RES_FILE) if len(b1_res) and len(a2_res): mdls_b1 = evaluate_all_models(clda.b1, b1_res) mdls_a2 = evaluate_all_models(clda.a2, a2_res) save_data_to_csv(MODELS_FILENAME, mdls_b1 + mdls_a2) else: print "Res data couldn't be read." else: print "Cl data couldn't be loaded."
def _generate(self, force_calc): pre_file_name = PRE_FILE_NAME_PREFIX + self._index + INPUT_FILE_NAME_EXT if not force_calc: self._pre = read_input_file(pre_file_name) if not len(self._pre): b1_res = read_res_file(B1_RES_FILE) a2_res = read_res_file(A2_RES_FILE) for k in self._k: if k[TYPE_COL] == TYPE_1_COL: cl_data = self._b1 res_data = b1_res else: cl_data = self._a2 res_data = a2_res lo_data, lo_target_data = Pre.get_data_for_pre(k[NAME_LO_COL], cl_data, res_data, True) lo_mdl = Pre.get_mdl(k[NAME_LO_COL]) vi_data, vi_target_data = Pre.get_data_for_pre(k[NAME_VI_COL], cl_data, res_data, False) vi_mdl = Pre.get_mdl(k[NAME_VI_COL]) print "Predicting: %s - %s" % (k[NAME_LO_COL], k[NAME_VI_COL]) lo_pre = self.get_pre_values(lo_data, lo_target_data, lo_mdl.lo_mdls) vi_pre = self.get_pre_values(vi_data, vi_target_data, vi_mdl.vi_mdls) self._pre.append(combine_lo_vi(lo_pre, vi_pre)) if self.generated: save_data_to_csv(pre_file_name, self._pre)
def _generate(self, force_calc): pre_file_name = PRE_FILE_NAME_PREFIX + self._index + INPUT_FILE_NAME_EXT if not force_calc: self._pre = read_input_file(pre_file_name) if not len(self._pre): b1_res = read_res_file(B1_RES_FILE) a2_res = read_res_file(A2_RES_FILE) for k in self._k: if k[TYPE_COL] == TYPE_1_COL: cl_data = self._b1 res_data = b1_res else: cl_data = self._a2 res_data = a2_res lo_data, lo_target_data = Pre.get_data_for_pre( k[NAME_LO_COL], cl_data, res_data, True) lo_mdl = Pre.get_mdl(k[NAME_LO_COL]) vi_data, vi_target_data = Pre.get_data_for_pre( k[NAME_VI_COL], cl_data, res_data, False) vi_mdl = Pre.get_mdl(k[NAME_VI_COL]) print "Predicting: %s - %s" % (k[NAME_LO_COL], k[NAME_VI_COL]) lo_pre = self.get_pre_values(lo_data, lo_target_data, lo_mdl.lo_mdls) vi_pre = self.get_pre_values(vi_data, vi_target_data, vi_mdl.vi_mdls) self._pre.append(combine_lo_vi(lo_pre, vi_pre)) if self.generated: save_data_to_csv(pre_file_name, self._pre)