Esempio n. 1
0
def job_mmd_med(p, data_source, tr, te, r):
    """
    MMD test of Gretton et al., 2012 used as a goodness-of-fit test.
    Require the ability to sample from p i.e., the UnnormalizedDensity p has 
    to be able to return a non-None from get_datasource()
    """
    # full data
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic
        pds = p.get_datasource()
        datY = pds.sample(data.sample_size(), seed=r + 294)
        Y = datY.data()
        XY = np.vstack((X, Y))

        # If p, q differ very little, the median may be very small, rejecting H0
        # when it should not?
        medx = util.meddistance(X, subsample=1000)
        medy = util.meddistance(Y, subsample=1000)
        medxy = util.meddistance(XY, subsample=1000)
        med_avg = (medx + medy + medxy) / 3.0
        k = kernel.KGauss(med_avg**2)

        mmd_test = mgof.QuadMMDGof(p, k, n_permute=400, alpha=alpha, seed=r)
        mmd_result = mmd_test.perform_test(data)
    return {'test_result': mmd_result, 'time_secs': t.secs}
Esempio n. 2
0
def job_mmd_opt(p, data_source, tr, te, r):
    """
    MMD test of Gretton et al., 2012 used as a goodness-of-fit test.
    Require the ability to sample from p i.e., the UnnormalizedDensity p has 
    to be able to return a non-None from get_datasource()

    With optimization. Gaussian kernel.
    """
    data = tr + te
    X = data.data()
    with util.ContextTimer() as t:
        # median heuristic 
        pds = p.get_datasource()
        datY = pds.sample(data.sample_size(), seed=r+294)
        Y = datY.data()
        XY = np.vstack((X, Y))

        med = util.meddistance(XY, subsample=1000)

        # Construct a list of kernels to try based on multiples of the median
        # heuristic
        #list_gwidth = np.hstack( (np.linspace(20, 40, 10), (med**2)
        #    *(2.0**np.linspace(-2, 2, 20) ) ) )
        list_gwidth = (med**2)*(2.0**np.linspace(-4, 4, 30) ) 
        list_gwidth.sort()
        candidate_kernels = [kernel.KGauss(gw2) for gw2 in list_gwidth]

        mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r)
        mmd_result = mmd_opt.perform_test(data,
                candidate_kernels=candidate_kernels,
                tr_proportion=tr_proportion, reg=1e-3)
    return { 'test_result': mmd_result, 'time_secs': t.secs}
Esempio n. 3
0
def job_mmd_dgauss_opt(p, data_source, tr, te, r):
    """
    MMD test of Gretton et al., 2012 used as a goodness-of-fit test.
    Require the ability to sample from p i.e., the UnnormalizedDensity p has 
    to be able to return a non-None from get_datasource()

    With optimization. Diagonal Gaussian kernel where there is one Gaussian width
    for each dimension.
    """
    data = tr + te
    X = data.data()
    d = X.shape[1]
    with util.ContextTimer() as t:
        # median heuristic 
        pds = p.get_datasource()
        datY = pds.sample(data.sample_size(), seed=r+294)
        Y = datY.data()
        XY = np.vstack((X, Y))

        # Get the median heuristic for each dimension
        meds = np.zeros(d)
        for i in range(d):
            medi = util.meddistance(XY[:, [i]], subsample=1000)
            meds[i] = medi

        # Construct a list of kernels to try based on multiples of the median
        # heuristic
        med_factors = 2.0**np.linspace(-4, 4, 20)  
        candidate_kernels = []
        for i in range(len(med_factors)):
            ki = kernel.KDiagGauss( (meds**2)*med_factors[i] )
            candidate_kernels.append(ki)

        mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r+56)
        mmd_result = mmd_opt.perform_test(data,
                candidate_kernels=candidate_kernels,
                tr_proportion=tr_proportion, reg=1e-3)
    return { 'test_result': mmd_result, 'time_secs': t.secs}