def main():
    parser = ArgumentParser()
    parser.add_argument('-i',
                        dest='input_data',
                        default='freiburg1_xyz.sqlite3',
                        help='input data set')
    parser.add_argument('-t',
                        dest='test_size',
                        default=10000,
                        type=int,
                        help='test data size')
    parser.add_argument('-b',
                        dest='batch_size',
                        default=100,
                        type=int,
                        help='batch size for testing')
    parser.add_argument('-c',
                        dest='checkpoint',
                        default='KinectPose2/KinectPose-100000')
    args = parser.parse_args()

    input_width, input_height, input_channel = 640, 480, 1
    output_size = 7
    if os.path.isfile(args.checkpoint + '.index') and \
        os.path.isfile(args.checkpoint + '.meta'):
        print('preparing data loader...')
        data_loader = FreiburgData(args.input_data)

        print('loading pre-train model...')
        model = KinectPoseModel(input_width,
                                input_height,
                                input_channel,
                                output_size,
                                model_name='KinectPose',
                                saving=False)
        with tf.Session() as sess:
            model.load(sess, args.checkpoint)

            batches = args.test_size / args.batch_size
            outputs = np.zeros(shape=[output_size], dtype=np.float32)
            for i in range(batches):
                p, n, l = data_loader.diff_depth_batch(args.batch_size)
                prediction = model.predict(sess, p, n)
                outputs += np.sum(np.abs(prediction - l), axis=0)
                print('processing batch %d...' % (i))

                print(prediction[0, :])
                print(l[0, :])
                p_image = p[0, :, :, 0]
                n_image = n[0, :, :, 0]
                plt.figure()
                plt.imshow(p_image, cmap='gray')

                plt.figure()
                plt.imshow(n_image, cmap='gray')
                plt.show()
            outputs /= args.test_size
            print(outputs)
    else:
        print('checkpoint not exists.')
Esempio n. 2
0
def main():
  parser = ArgumentParser()
  parser.add_argument('--input-db', dest='input_db',
    default='freiburg1_xyz.sqlite3',
    help='input dataset')
  parser.add_argument('--checkpoint', dest='checkpoint',
    default='KinectPose2/KinectPose-100000',
    help='checkpoint path')
  args = parser.parse_args()

  data = FreiburgData(args.input_db)
  logger.info(data.depth_images.shape)

  predicted_poses = predict_seq(data.depth_images, args.checkpoint,
    data.depth_labels[0, :])

  fig = plt.figure()
  ax = fig.add_subplot(111, projection='3d')
  ax.plot(data.depth_labels[:, 0], data.depth_labels[:, 1],
    data.depth_labels[:, 2], 'g')
  ax.plot(predicted_poses[:, 0], predicted_poses[:, 1],
    predicted_poses[:, 2], 'r')
  ax.set_xlabel('$X$')
  ax.set_ylabel('$Y$')
  plt.show()
Esempio n. 3
0
def main():
  parser = ArgumentParser()
  parser.add_argument('--db', dest='db', default='freiburg1_xyz.sqlite3',
    help='input database')
  parser.add_argument('--batch-size', type=int, dest='batch_size',
    default=64, help='batch size for training')
  parser.add_argument('--max-epoch', type=int, dest='max_epoch',
    default=100000, help='max epoch for training')
  parser.add_argument('--output-epoch', type=int, dest='output_epoch',
    default=10, help='epoch for display and saving')
  parser.add_argument('--keep-prob', type=float, dest='keep_prob',
    default=0.8, help='keep probability for drop out')
  parser.add_argument('--decay-epoch', type=int, dest='decay_epoch',
    default=5000, help='decay learning rate epoch')

  args = parser.parse_args()
  data_loader = FreiburgData(args.db)

  input_width = 640
  input_height = 480
  input_channel = 1
  output_size = 7

  model = KinectPoseModel(input_width, input_height, input_channel,
    output_size, model_name='KinectPose', saving=True)

  with tf.Session() as sess:
    model.train_with_loader(sess, data_loader,
      batch_size=args.batch_size,
      output_period=args.output_epoch,
      decay_epoch=args.decay_epoch,
      keep_prob=args.keep_prob,
      max_epoch=args.max_epoch)
Esempio n. 4
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--input-db',
                        dest='input_db',
                        default='freiburg1_360.sqlite3',
                        help='input dataset')
    parser.add_argument(
        '--checkpoint',
        dest='checkpoint',
        default='saved_KP_320_240_3_diff10_c11/KinectPose-3400',
        help='checkpoint path')
    parser.add_argument('--diff',
                        dest='diff',
                        type=int,
                        default='10',
                        help='prediction frame diff')
    args = parser.parse_args()

    data = FreiburgData(args.input_db)
    logger.info(data.depth_images.shape)

    predicted_poses, acc = predict_seq(data.rgb_images,
                                       args.checkpoint,
                                       data.rgb_labels,
                                       diff=args.diff)
    #  print(data.rgb_labels[0:10])
    #  print(predicted_poses[0:10])
    print(acc)

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot(data.depth_labels[:, 0], data.depth_labels[:, 1],
            data.depth_labels[:, 2], 'g')  #depth?????
    ax.plot(predicted_poses[:, 0], predicted_poses[:, 1],
            predicted_poses[:, 2], 'r')
    ax.set_xlabel('$X$')
    ax.set_ylabel('$Y$')
    plt.show()
Esempio n. 5
0
def main():
    logging.basicConfig()
    logger = logging.getLogger('train')
    logger.setLevel(logging.INFO)
    parser = ArgumentParser()
    parser.add_argument('--db',
                        dest='db',
                        default='freiburg1_xyz.sqlite3',
                        help='input database')
    parser.add_argument('--batch-size',
                        type=int,
                        dest='batch_size',
                        default=256,
                        help='batch size for training')
    parser.add_argument('--max-epoch',
                        type=int,
                        dest='max_epoch',
                        default=10000,
                        help='max epoch for training')
    parser.add_argument('--output-epoch',
                        type=int,
                        dest='output_epoch',
                        default=10,
                        help='epoch for display and saving')
    parser.add_argument('--keep-prob',
                        type=float,
                        dest='keep_prob',
                        default=0.8,
                        help='keep probability for drop out')
    parser.add_argument('--decay-epoch',
                        type=int,
                        dest='decay_epoch',
                        default=1000,
                        help='decay learning rate epoch')
    parser.add_argument('--input-type',
                        dest='input_type',
                        default='rgbd',
                        help='type of input(channels)')

    args = parser.parse_args()
    data_loader = FreiburgData(args.db)

    input_width = 320
    input_height = 240
    if args.input_type == 'depth':
        input_channel = 1
        logger.info('input type: depth')
    elif args.input_type == 'rgb':
        input_channel = 3
        logger.info('input type: rgb')
    elif args.input_type == 'rgbd':
        input_channel = 4
        logger.info('input type: rgbd')
    output_size = 3

    model = KinectPoseModel(input_width,
                            input_height,
                            input_channel,
                            output_size,
                            kernel_size=3,
                            model_name='KinectPose',
                            saving=True)

    with tf.Session() as sess:
        model.train_with_loader(sess,
                                data_loader,
                                batch_size=args.batch_size,
                                output_period=args.output_epoch,
                                decay_epoch=args.decay_epoch,
                                keep_prob=args.keep_prob,
                                max_epoch=args.max_epoch,
                                input_type=args.input_type)