def set_adapted_free_energy(self):
        """
		Set free energy based on adapted activity activity.
		"""

        activity_stats = [
            self.adapted_activity_mu, self.adapted_activity_sigma
        ]
        adapted_activity = random_matrix([self.Mm],
                                         params=activity_stats,
                                         seed=self.seed_adapted_activity)
        self.eps = free_energy(self.Ss, self.Kk1, self.Kk2, adapted_activity,
                               self.binding_competitive,
                               self.num_binding_sites)

        # Apply max and min epsilon value to each component
        self.min_eps = random_matrix(
            self.Mm,
            params=[self.mu_min_eps, self.sigma_min_eps],
            seed=self.seed_eps)
        self.max_eps = random_matrix(
            self.Mm,
            params=[self.mu_max_eps, self.sigma_max_eps],
            seed=self.seed_eps)
        self.eps = sp.maximum(self.eps.T, self.min_eps).T
        self.eps = sp.minimum(self.eps.T, self.max_eps).T
	def set_adapted_free_energy(self):
		"""
		Set free energy based on adapted activity activity.
		"""
		
		activity_stats = [self.adapted_activity_mu, self.adapted_activity_sigma]
		adapted_activity = random_matrix([self.Mm], params=activity_stats, 
									seed=self.seed_adapted_activity)
		self.eps = free_energy(self.Ss0, self.Kk1, self.Kk2, adapted_activity)
Esempio n. 3
0
    def set_temporal_adapted_epsilon(self):
        """
		Set adapted epsilon based on current value and adaptation rate.
		The adapted value is set by linear decay rate equation, 
		d(eps)/dt = beta*(a_0 - a). a_0 is set by passing the manually
		chosen variables temporal_adaptation_mu_eps and 
		temporal_adaptation_mu_Ss0 to the activity. 
		"""

        # Perfectly adapted activity level is set manually
        activity_stats = [
            self.adapted_activity_mu, self.adapted_activity_sigma
        ]
        perfect_adapt_Yy = random_matrix([self.Mm],
                                         params=activity_stats,
                                         seed=self.seed_adapted_activity)
        beta_scale_factors = sp.random.uniform(self.adaptive_beta_scaling_min,
                                               self.adaptive_beta_scaling_max,
                                               self.Mm)

        # This is a kind of hacky way to incorporate WL breaking.
        # Requires Kk1 to be small
        Kk2_sum = sp.dot(self.Kk2**-1.0, self.Ss).T
        den = perfect_adapt_Yy.T*(1 - (1/Kk2_sum)**beta_scale_factors)\
          + (1/Kk2_sum)**beta_scale_factors
        perfect_adapt_Yy = (perfect_adapt_Yy.T / den)

        # Make adaptation rate into a vector if it has not yet been set.
        try:
            self.temporal_adaptation_rate_vector
        except AttributeError:
            assert self.temporal_adaptation_rate_sigma == 0, "Before "\
             "setting new epsilon with set_temporal_adapted_epsilon, "\
             "you must call set_ordered_temporal_adaptation_rate, since "\
             "temporal_adaptation_rate_sigma is nonzero"
            self.temporal_adaptation_rate_vector = sp.ones(self.Mm)*\
             self.temporal_adaptation_rate

        # Receptor activity used for adaptation is not firing rate; just
        # get the Or/Orco activity, w/o LN functions at backend.
        current_Yy = receptor_activity(self.Ss, self.Kk1, self.Kk2, self.eps,
                                       self.binding_competitive,
                                       self.num_binding_sites)

        if self.temporal_adaptation_type == 'imperfect':
            d_eps_dt = (self.temporal_adaptation_rate_vector*\
               (current_Yy.T - perfect_adapt_Yy)).T
            delta_t = self.signal_trace_Tt[1] - self.signal_trace_Tt[0]
            self.eps += delta_t * d_eps_dt
        elif self.temporal_adaptation_type == 'perfect':
            self.eps = free_energy(self.Ss, self.Kk1, self.Kk2,
                                   perfect_adapt_Yy)

        # Enforce epsilon limits
        self.eps = sp.maximum(self.eps.T, self.min_eps).T
        self.eps = sp.minimum(self.eps.T, self.max_eps).T
Esempio n. 4
0
    def set_adapted_free_energy(self):
        """
		Set free energy based on adapted activity activity.
		"""

        activity_stats = [
            self.adapted_activity_mu, self.adapted_activity_sigma
        ]
        adapted_activity = random_matrix([self.Mm],
                                         params=activity_stats,
                                         seed=self.seed_adapted_activity)

        # Break adaptation slightly by adjusting A0 with log of s0
        sp.random.seed(self.seed_adapted_activity)
        if (self.mu_dSs_2 is not None):
            max_sig_comp = max(max(self.mu_dSs, self.mu_dSs_2), self.mu_Ss0)
        else:
            max_sig_comp = max(self.mu_dSs, self.mu_Ss0)
        factors = sp.random.uniform(self.imperfect_A0_mult_min,
                                    self.imperfect_A0_mult_max, self.Mm)
        factors *= sp.log(max_sig_comp) / sp.log(10) + self.imperfect_A0_const
        adapted_activity *= (1 + factors)
        adapted_activity = sp.minimum(adapted_activity, 0.99)
        if sp.mean(factors) > 1:
            print('activity factors:', sp.mean(factors), '+/-',
                  sp.std(factors))

        # Scale the beta factor instead (breaks WL from 0 to 1)
        sp.random.seed(self.seed_adapted_activity)
        beta_scale_factors = sp.random.uniform(self.adaptive_beta_scaling_min,
                                               self.adaptive_beta_scaling_max,
                                               self.Mm)

        self.eps = free_energy(self.Ss, self.Kk1, self.Kk2, adapted_activity,
                               self.binding_competitive,
                               self.num_binding_sites, beta_scale_factors)
        self.min_eps = random_matrix(
            self.Mm,
            params=[self.mu_min_eps, self.sigma_min_eps],
            seed=self.seed_eps)
        self.max_eps = random_matrix(
            self.Mm,
            params=[self.mu_max_eps, self.sigma_max_eps],
            seed=self.seed_eps)
        self.eps = sp.maximum(self.eps.T, self.min_eps).T
        self.eps = sp.minimum(self.eps.T, self.max_eps).T
    def set_temporal_adapted_epsilon(self):
        """
		Set adapted epsilon based on current value and adaptation rate.
		The adapted value is set by linear decay rate equation, 
		d(eps)/dt = beta*(a_0 - a). a_0 is set by passing the manually
		chosen variables temporal_adaptation_mu_eps and 
		temporal_adaptation_mu_Ss0 to the activity. 
		"""

        # Perfectly adapted activity level is based on the variables:
        #  temporal_adaptation_mu_eps, temporal_adaptation_sigma_eps,
        #  temporal_adaptation_mu_Ss0. These functions take the activity
        #  level set by these variables at that signal intensity, to
        #  adapt epsilon to the current Ss
        perfect_adapt_eps_base = sp.ones(self.Mm)*\
          self.temporal_adaptation_mu_eps + random_matrix(self.Mm,
          params=[0, self.temporal_adaptation_sigma_eps],
          seed=self.seed_eps)
        perfect_adapt_Ss = sp.zeros(self.Nn)
        perfect_adapt_Ss[self.Ss0 != 0] = self.temporal_adaptation_mu_Ss0
        perfect_adapt_Yy = receptor_activity(perfect_adapt_Ss, self.Kk1,
                                             self.Kk2, perfect_adapt_eps_base)

        # Make adaptation rate into a vector if it has not yet been set.
        try:
            self.temporal_adaptation_rate_vector
        except AttributeError:
            assert self.temporal_adaptation_rate_sigma == 0, "Before "\
             "setting new epsilon with set_temporal_adapted_epsilon, "\
             "you must call set_ordered_temporal_adaptation_rate, since "\
             "temporal_adaptation_rate_sigma is nonzero"
            self.temporal_adaptation_rate_vector = sp.ones(self.Mm)*\
             self.temporal_adaptation_rate

        if self.temporal_adaptation_type == 'imperfect':
            d_eps_dt = self.temporal_adaptation_rate_vector*\
               (self.Yy - perfect_adapt_Yy)
            delta_t = self.signal_trace_Tt[1] - self.signal_trace_Tt[0]
            self.eps += delta_t * d_eps_dt
        elif self.temporal_adaptation_type == 'perfect':
            self.eps = free_energy(self.Ss, self.Kk1, self.Kk2,
                                   perfect_adapt_Yy)