def normalized(self): """Normalize the list of dependencies """ channels, packages = self.get_channels_packages() return Dependencies(conda=packages, pip=kconda.normalize_pip(list(self.pip)), conda_channels=channels)
def to_env_dict(self, env_name): deps = self.normalized() channels, packages = deps.get_channels_packages() env_dict = OrderedDict( name=env_name, channels=channels, dependencies=packages + [OrderedDict(pip=kconda.normalize_pip(deps.pip))]) return env_dict
def normalized(self): """Normalize the list of dependencies """ channels, packages = self._get_channels_packages() if isinstance(packages, related.types.TypedSequence): packages = packages.list if isinstance(channels, related.types.TypedSequence): channels = channels.list return Dependencies(conda=packages, pip=kconda.normalize_pip(list(self.pip)), conda_channels=channels)
def to_env_dict(self, env_name): deps = self.normalized() channels, packages = deps._get_channels_packages() if isinstance(packages, related.types.TypedSequence): packages = packages.list if isinstance(channels, related.types.TypedSequence): channels = channels.list env_dict = OrderedDict( name=env_name, channels=channels, dependencies=packages + [OrderedDict(pip=kconda.normalize_pip(deps.pip))]) return env_dict
def merge(self, dependencies): """Merge one dependencies with another one Use case: merging the dependencies of model and dataloader Args: dependencies: Dependencies instance Returns: new Dependencies instance """ return Dependencies( conda=unique_list(list(self.conda) + list(dependencies.conda)), pip=kconda.normalize_pip(list(self.pip) + list(dependencies.pip)), conda_channels=unique_list( list(self.conda_channels) + list(dependencies.conda_channels)))