class LMFitTab(LMFitBaseTab, LMFitTab_UI): fit_finished = pyqtSignal(list, list, dict) def __init__(self, sliced_data, orbitals): self.model = LMFitModel(sliced_data, orbitals) # Setup GUI super(LMFitTab, self).__init__() self.setupUi(self) self._setup() self._connect() self.refresh_sliced_plot() self.refresh_selected_plot() kmap = self.refresh_sum_plot() self.refresh_residual_plot(weight_sum_data=kmap) def get_title(self): return 'LM-Fit' def trigger_fit(self): results = self.model.fit() settings = self.model.get_settings() data = [self.model.sliced_data, self.model.orbitals] self.fit_finished.emit(data, results, settings) def change_slice(self): axis_index = self.slider.get_axis() slice_policy = self.lmfit_options.get_slice_policy() combined = True if slice_policy == 'all combined' else False slice_indices = (self.slider.get_index() if slice_policy == 'only one' else 'all') self.model.set_slices(slice_indices, axis_index=axis_index, combined=combined) self.refresh_sliced_plot() self.refresh_residual_plot() def change_axis(self): axis = self.interpolation.get_axis() self.model.set_axis(axis) self.refresh_sliced_plot() self.refresh_selected_plot() kmap = self.refresh_sum_plot() self.refresh_residual_plot(weight_sum_data=kmap) def _change_slice_policy(self, slice_policy): axis = self.slider.get_axis() if slice_policy == 'all': self.model.set_slices('all', axis_index=axis, combined=False) elif slice_policy == 'only one': index = self.slider.get_index() self.model.set_slices([index], axis_index=axis, combined=False) else: self.model.set_slices('all', axis_index=axis, combined=True) def _change_region(self, *args): self.model.set_region(*args) self.refresh_residual_plot() def _change_background(self, *args): new_variables = self.model.set_background_equation(*args) for variable in new_variables: self.tree.add_equation_parameter(variable) self.refresh_sum_plot() self.refresh_residual_plot() def _setup(self): LMFitBaseTab._setup(self) self.orbital_options = LMFitOrbitalOptions() self.tree = LMFitTree(self.model.orbitals, self.model.parameters) self.interpolation = LMFitInterpolation() self.lmfit_options = LMFitOptions(self) self.change_axis() self.model.set_crosshair(self.crosshair.model) self._change_background(self.lmfit_options.get_background()) layout = QVBoxLayout() layout.setContentsMargins(3, 3, 3, 3) layout.setSpacing(3) self.scroll_area.widget().setLayout(layout) layout.insertWidget(0, self.slider) layout.insertWidget(1, self.orbital_options) layout.insertWidget(2, self.interpolation) layout.insertWidget(3, self.lmfit_options) layout.insertWidget(4, self.colormap) layout.insertWidget(5, self.crosshair) self.layout.insertWidget(1, self.tree) def _connect(self): LMFitBaseTab._connect(self) self.interpolation.interpolation_changed.connect(self.change_axis) self.tree.value_changed.connect(self._refresh_orbital_plots) self.tree.vary_changed.connect(self.update_chi2_label) self.lmfit_options.background_changed.connect(self._change_background) self.lmfit_options.fit_triggered.connect(self.trigger_fit) self.lmfit_options.method_changed.connect(self.model.set_fit_method) self.lmfit_options.slice_policy_changed.connect( self._change_slice_policy) self.orbital_options.symmetrization_changed.connect( self.model.set_symmetrization) self.orbital_options.symmetrization_changed.connect( self._refresh_orbital_plots) self.orbital_options.polarization_changed.connect( self.model.set_polarization) self.orbital_options.polarization_changed.connect( self._refresh_orbital_plots)
lmfit.set_polarization('toroid', 'p') lmfit.set_background_equation('c') # Set parameters not intended for fitting to desired value lmfit.edit_parameter('E_kin', value=27.2, vary=False) lmfit.edit_parameter('alpha', value=40, vary=False) # Activate fitting for background ('c') and all orbital weights lmfit.edit_parameter('c', value=250, vary=True) # constant background for i in [0, 1, 2, 3]: lmfit.edit_parameter('w_' + str(i), vary=True) # Set slices to be used and perform fit lmfit.set_slices('all', combined=False) lmfit.set_fit_method(method='matrix_inversion') results = lmfit.fit() # Extract fitting results weights = np.array([[ result[1].params['w_0'].value, result[1].params['w_1'].value, result[1].params['w_2'].value, result[1].params['w_3'].value, result[1].params['c'].value ] for result in results]) print(weights) # Plot results: weights of orbitals (pDOS) vs. kinetic energy names = ['PTCDA_C', 'PTCDA_D', 'PTCDA_E', 'PTCDA_F', 'background'] styles = ['.r-', 'k-', 'r--', '^g-', 'k:'] fig, ax = plt.subplots(figsize=(12, 5)) x = exp_data.axes[0].axis
lmfit.edit_parameter('alpha', value=40, vary=False) lmfit.set_background_equation('c') # Activate fitting for background ('c') and all orbital weights and theta lmfit.edit_parameter('c', value=1, vary=True) # constant background for i in [0]: lmfit.edit_parameter('w_' + str(i), vary=True) lmfit.edit_parameter('theta_' + str(i), min=0, value=5, vary=True) lmfit.edit_parameter('phi_' + str(i), value=90, vary=False) lmfit.edit_parameter('psi_' + str(i), value=90, vary=False) # Set slices to be used and perform fit lmfit.set_slices([2], combined=False) lmfit.set_fit_method(method='leastsq', xtol=1e-12) best_fit = lmfit.fit()[0][1] # Print results of best fit print('reduced chi^2 = ', best_fit.redchi) print(best_fit.params['theta_0']) print(best_fit.params['w_0']) print(best_fit.params['c']) # Now make plot of chi^2 vs. theta by looping over a list of # theta-values, but setting fixing all variables (vary=False) in the fit lmfit.edit_parameter('w_0', value=best_fit.params['w_0'].value, vary=False) lmfit.edit_parameter('c', value=best_fit.params['c'].value, vary=False) theta_values = np.linspace(0, 60, 61) redchi2_list = [] for theta in theta_values:
class TestLMFitModel(unittest.TestCase): @classmethod def setUpClass(cls): file_path = os.path.dirname(os.path.realpath(__file__)) input_path = file_path + '/../../example/data/' sliced_path = input_path + 'example5_6584.hdf5' cls.sliced_data = SlicedData.init_from_hdf5(sliced_path) orbital_paths = [ 'PTCDA_C.cube', 'PTCDA_D.cube', 'PTCDA_E.cube', 'PTCDA_F.cube' ] cls.orbitals = [ OrbitalData.init_from_file(input_path + path, ID) for ID, path in enumerate(orbital_paths) ] cls.expected = np.loadtxt(file_path + '/output/weights_PTCDA') cls.background_expected = np.loadtxt(file_path + '/output/background_expected') def setUp(self): self.lmfit = LMFitModel(TestLMFitModel.sliced_data, TestLMFitModel.orbitals) self.crosshair = CrosshairAnnulusModel() def test_set_crosshair(self): self.lmfit.set_crosshair(self.crosshair) self.assertEqual(self.lmfit.crosshair, self.crosshair) def test_set_axis(self): step_size = 0.24 range_ = [-3, 3] axis = np.linspace(*range_, num=step_size_to_num(range_, step_size), endpoint=True) self.lmfit.set_axis_by_step_size(range_, step_size) npt.assert_almost_equal(self.lmfit.get_sliced_kmap(0).x_axis, axis) def test_set_slices(self): self.lmfit.set_slices([1, 2, 3]) self.lmfit.set_slices([0, 1, 2, 3], combined=True) def test_set_background_equation(self): self.lmfit.set_background_equation('np.exp(a)') npt.assert_equal(self.lmfit.background_equation, ['np.exp(a)', ['a']]) self.assertRaises(ValueError, self.lmfit.set_background_equation, 'np.exp(a') def test_parameters(self): self.lmfit.set_background_equation('np.exp(a)') self.assertEqual(self.lmfit.parameters['w_1'].min, 0) self.assertEqual(self.lmfit.parameters['a'].value, 0) self.assertEqual(self.lmfit.parameters['E_kin'].max, 150) def test_edit_parameter(self): self.lmfit.edit_parameter('w_1', value=1.5) self.assertEqual(self.lmfit.parameters['w_1'].value, 1.5) def test_background(self): range_, dk = [-3.0, 3.0], 0.025 self.lmfit.set_axis_by_step_size(range_, dk) self.lmfit.set_background_equation( '(np.exp(-x**2-y**2)-np.exp(-(x-1)**2-(y-1)**2))/2') background = self.lmfit._get_background(variables={}) npt.assert_almost_equal(background, TestLMFitModel.background_expected) def test_settings(self): lmfit_new = LMFitModel(TestLMFitModel.sliced_data, TestLMFitModel.orbitals) lmfit_new.set_settings(self.lmfit.get_settings()) def test_PTCDA(self): if float(config.get_key('orbital', 'dk3D')) != 0.12: print('WARNING: Test \'test_PTCDA\' from the ' + '\'test_lmfit\' module has not been run. It requires ' + '\'dk3D\' setting from the \'cube\' category to be ' + 'to 0.12.') return # Set certain parameters not being fitted but desired to be changed range_, dk = [-3.0, 3.0], 0.04 self.lmfit.set_axis_by_step_size(range_, dk) self.lmfit.set_polarization('toroid', 'p') self.lmfit.set_background_equation('c') # Set certain fit parameter to desired value self.lmfit.edit_parameter('E_kin', value=27.2) self.lmfit.edit_parameter('alpha', value=40) self.lmfit.edit_parameter('c', value=1, vary=True) # Activate fitting for all weights (i is a dummy ID used in setUpClass) for i in [0, 1, 2, 3]: self.lmfit.edit_parameter('w_' + str(i), vary=True) # Set slices to be used self.lmfit.set_slices('all', combined=False) results = self.lmfit.fit() # Test results weights = np.array([[ result[1].params['w_0'].value, result[1].params['w_1'].value, result[1].params['w_2'].value, result[1].params['w_3'].value ] for result in results]).T npt.assert_almost_equal(weights, TestLMFitModel.expected, decimal=5)
class LMFitTab(LMFitBaseTab, LMFitTab_UI): fit_finished = pyqtSignal(list, dict) def __init__(self, sliced_tab, orbital_tab, max_orbitals=-1): self.sliced_tab = sliced_tab self.orbital_tab = orbital_tab if max_orbitals != -1: self.model = LMFitModel(sliced_tab.get_data(), orbital_tab.get_orbitals()[:max_orbitals]) else: self.model = LMFitModel(sliced_tab.get_data(), orbital_tab.get_orbitals()) # Setup GUI super(LMFitTab, self).__init__() self.setupUi(self) self._setup() self._connect() self.refresh_all() @classmethod def init_from_save(cls, save, dependencies, tab_widget): sliced_tab = tab_widget.get_tab_by_ID(dependencies['sliced_tab']) orbital_tab = tab_widget.get_tab_by_ID(dependencies['orbital_tab']) # max orbitals: If orbitals were loaded after lmfit was created they # will not be reflected in the results -> not load them self = cls(sliced_tab, orbital_tab, max_orbitals=len(save['tree'])-2) self.locked_tabs = [sliced_tab, orbital_tab] self.title = save['title'] self.tree.restore_state(save['tree']) self.interpolation.restore_state(save['interpolation']), self.lmfit_options.restore_state(save['lmfit_options']) self.orbital_options.restore_state(save['orbital_options']), self.slider.restore_state(save['slider']) self.colormap.restore_state(save['colormap']) self.crosshair.restore_state(save['crosshair']) self.sliced_plot.set_colormap(save['colorscales']['sliced']) self.sliced_plot.set_levels(save['levels']['sliced']) self.sum_plot.set_colormap(save['colorscales']['sum']) self.sum_plot.set_levels(save['levels']['sum']) self.residual_plot.set_levels(save['levels']['residual']) self.residual_plot.set_colormap(save['colorscales']['residual']) self.selected_plot.set_levels(save['levels']['selected']) self.selected_plot.set_colormap(save['colorscales']['selected']) return self def get_title(self): return self.title def get_data(self): return [self.model.sliced_data, self.model.orbitals] def trigger_fit(self): try: new_results = self.model.fit() except ValueError as e: logging.getLogger('kmap').warning(str(e)) self.lmfit_options.update_fit_button() return if not hasattr(self, 'results'): self.results = new_results else: results_dict = dict(self.results) new_results_dict = dict(new_results) results_dict.update(new_results_dict) self.results = sorted(list(results_dict.items()), key=lambda x: x[0]) settings = self.model.get_settings() self.fit_finished.emit(self.results, settings) def change_slice(self): axis_index = self.slider.get_axis() slice_policy = self.lmfit_options.get_slice_policy() combined = True if slice_policy == 'all combined' else False slice_indices = (self.slider.get_index() if slice_policy == 'only one' else 'all') self.model.set_slices( slice_indices, axis_index=axis_index, combined=combined) self.refresh_sliced_plot() self.refresh_residual_plot() def change_axis(self): axis = self.interpolation.get_axis() self.model.set_axis(axis) self.refresh_all() def save_state(self): save, dependencies = super().save_state() save.update({'orbital_options': self.orbital_options.save_state(), 'interpolation': self.interpolation.save_state(), 'lmfit_options': self.lmfit_options.save_state(), 'tree': self.tree.save_state()}) dependencies.update({'sliced_tab': self.sliced_tab.ID, 'orbital_tab': self.orbital_tab.ID}) return save, dependencies def _change_slice_policy(self, slice_policy): axis = self.slider.get_axis() if slice_policy == 'all': self.model.set_slices('all', axis_index=axis, combined=False) elif slice_policy == 'only one': index = self.slider.get_index() self.model.set_slices([index], axis_index=axis, combined=False) elif slice_policy == 'all combined': self.model.set_slices('all', axis_index=axis, combined=True) else: indices = [int(e) for e in slice_policy.split(' ')] self.model.set_slices(indices, axis_index=axis, combined=False) def _change_method(self, method): self._change_to_matrix_state(method == 'matrix_inversion') self.model.set_fit_method(method) def _change_to_matrix_state(self, state): if state: variables = self.model.background_equation[1] if 'c' not in variables: self.lmfit_options._pre_factor_background() self.tree._change_to_matrix_state(state) def _change_region(self, *args): self.model.set_region(*args) self.refresh_all() def _change_background(self, *args): new_variables = self.model.set_background_equation(*args) for variable in new_variables: self.tree.add_equation_parameter(variable) self.refresh_sum_plot() self.refresh_residual_plot() def _setup(self): LMFitBaseTab._setup(self) self.orbital_options = LMFitOrbitalOptions() self.tree = LMFitTree(self.model.orbitals, self.model.parameters) self.interpolation = LMFitInterpolation() self.lmfit_options = LMFitOptions(self) self.change_axis() self.model.set_crosshair(self.crosshair.model) self._change_background(self.lmfit_options.get_background()) layout = QVBoxLayout() layout.setContentsMargins(3, 3, 3, 3) layout.setSpacing(3) self.scroll_area.widget().setLayout(layout) layout.insertWidget(0, self.slider) layout.insertWidget(1, self.orbital_options) layout.insertWidget(2, self.interpolation) layout.insertWidget(3, self.lmfit_options) layout.insertWidget(4, self.colormap) layout.insertWidget(5, self.crosshair) self.layout.insertWidget(1, self.tree) def _connect(self): LMFitBaseTab._connect(self) self.interpolation.interpolation_changed.connect(self.change_axis) self.tree.value_changed.connect(self._refresh_orbital_plots) self.tree.vary_changed.connect(self.update_chi2_label) self.lmfit_options.background_changed.connect(self._change_background) self.lmfit_options.fit_triggered.connect(self.trigger_fit) self.lmfit_options.method_changed.connect(self._change_method) self.lmfit_options.slice_policy_changed.connect( self._change_slice_policy) self.lmfit_options.region_changed.connect(self._change_region) self.orbital_options.symmetrization_changed.connect( self.model.set_symmetrization) self.orbital_options.symmetrization_changed.connect( self._refresh_orbital_plots) self.orbital_options.polarization_changed.connect( self.model.set_polarization) self.orbital_options.polarization_changed.connect( self._refresh_orbital_plots)