Esempio n. 1
0
print "  number of components to retain: %d" % num_components

P = eigv.astype('float32') * np.sqrt(1.0/(eigs + bias)) # PCA whitening
P = P[:, -num_components:] # truncate transformation matrix

tock()


# kmeans
print "Learn kmeans"
k = settings['num_means']

print "  whiten patches"
patches_subset_whitened = np.dot(patches_subset_centered, P)
print "  run kmeans"
centroids = kmeans.spherical_kmeans(patches_subset_whitened, k, num_iterations=20, batch_size=10000)

tock()


# feature extraction and summarisation
print "Feature extraction and summarisation"
threshold = settings['threshold']
PC = np.dot(P, centroids.T)

# def summarise_features(features):
#     features = features.reshape(features.shape[0], -1, features.shape[3]) # merge time and frequency axes
#     return np.hstack([features.mean(1), features.std(1), features.min(1), features.max(1)]) # summarize over time axis
#     # return features.mean(1)
#     # return features.max(1)
Esempio n. 2
0
print("  number of components to retain: %d" % num_components)

P = eigv.astype('float32') * np.sqrt(1.0 / (eigs + bias))  # PCA whitening
P = P[:, -num_components:]  # truncate transformation matrix

tock()

# kmeans
print("Learn kmeans")
k = settings['num_means']

print("  whiten patches")
patches_subset_whitened = np.dot(patches_subset_centered, P)
print("  run kmeans")
centroids = kmeans.spherical_kmeans(patches_subset_whitened,
                                    k,
                                    num_iterations=20,
                                    batch_size=10000)

tock()

# feature extraction and summarisation
print("Feature extraction and summarisation")
threshold = settings['threshold']
PC = np.dot(P, centroids.T)

# def summarise_features(features):
#     features = features.reshape(features.shape[0], -1, features.shape[3]) # merge time and frequency axes
#     return np.hstack([features.mean(1), features.std(1), features.min(1), features.max(1)]) # summarize over time axis
#     # return features.mean(1)
#     # return features.max(1)