Esempio n. 1
0
def loopPcaKnn(loop=1):
    accuracy = 0
    for i in range(loop):
        iris_data = IrisPCA('iris_data_set/iris.data')
        iris_data.randomSplit(35)
        # print (np.array(iris_data.irisdata))
        # print (np.array(iris_data.test_data))
        # get means and Standard deviation for training data
        iris_data.calTrainMeanSd(iris_data.train_data)
        # print ("Mean: \n", iris_data.train_mean)
        # print ("Standard deviation: \n", iris_data.train_standard_deviation)
        # apply Z score normalize for training data
        # print (np.array(iris_data.train_data))
        iris_data.zScoreNormalize(iris_data.train_data)
        # np.set_printoptions(precision=3)
        # print (np.array(iris_data.train_data))
        # get Projection Matrix W
        iris_data.calProjectionMatrixW(number_of_conponent=2)
        # print ("\nProjection Matrix W: \n", np.array(iris_data.projectionMatrixW))
        # apply Z score normalize for testing data
        # print (np.array(iris_data.test_data))
        iris_data.zScoreNormalize(iris_data.test_data)
        # print (np.array(iris_data.test_data))
        new_train_data = iris_data.getProjectedData(iris_data.train_data)
        new_test_data = iris_data.getProjectedData(iris_data.test_data)
        # print (np.array(new_train_data))
        # print (np.array(new_test_data))
        knn = Knn()
        # print ("Round ",i+1, " 3-NN accuracy: ", format(knn.kNearestNeighbors(new_train_data, new_test_data), ".3f"))
        accuracy += knn.kNearestNeighbors(new_train_data, new_test_data)
    return accuracy / loop
Esempio n. 2
0
def loopLdaKnn(loop=1):
    accuracy = 0
    for i in range(loop):
        iris_data = IrisLDA('iris_data_set/iris.data')
        iris_data.randomSplit(35)
        iris_data.getMeansForEachClass(iris_data.train_data)
        iris_data.getScatterMatrices()
        iris_data.getTranformMatrixW()
        new_train_data = iris_data.getProjectedData(iris_data.train_data)
        new_test_data = iris_data.getProjectedData(iris_data.test_data)
        # print (np.array(iris_data.train_data))
        # print (np.array(new_train_data))
        knn = Knn()
        print(
            "Round ", i + 1, " 3-NN accuracy: ",
            format(knn.kNearestNeighbors(new_train_data, new_test_data),
                   ".3f"))
        accuracy += knn.kNearestNeighbors(new_train_data, new_test_data)
    return accuracy / loop
Esempio n. 3
0
def icaKnnTest():
    iris_data = IrisICA('iris_data_set/iris.data')
    iris_data.plotIrisData('iris data before ica')
    iris_data.applyIcaFromFullIris(number_components=4)
    energy_of_components = iris_data.getSortedComponentEnergy()
    train_data, test_data = iris_data.getTrainTestSet(energy_of_components[:2],
                                                      train_size=0.7)
    iris_data.plotIrisData('iris data after ica')
    knn = Knn()
    print(knn.kNearestNeighbors(train_data, test_data))
    plt.show()
Esempio n. 4
0
def icaKnnLoop(loop=10):
    accuracy = 0
    for i in range(loop):
        iris_data = IrisICA('iris_data_set/iris.data')
        iris_data.applyIcaFromFullIris(number_components=4)
        energy_of_components = iris_data.getSortedComponentEnergy()
        train_data, test_data = iris_data.getTrainTestSet(
            energy_of_components[:2], train_size=0.7)
        knn = Knn()
        current_accuracy = knn.kNearestNeighbors(train_data, test_data)
        accuracy += current_accuracy
        print('round ', i + 1, ' accuracy: ', current_accuracy)
    return accuracy / loop
def loopFaKnn(loop=1):
    accuracy = 0
    for i in range(loop):
        iris_data = IrisFA('iris_data_set/iris.data')
        iris_data.randomSplit(35)
        iris_data.getProjectionMatrixW(k=2)
        new_train_data = iris_data.getProjectedData(iris_data.train_data)
        new_test_data = iris_data.getProjectedData(iris_data.test_data)
        # print (np.array(iris_data.train_data))
        # print (np.array(new_train_data))
        knn = Knn()
        # print ("Round ",i+1, " 3-NN accuracy: ", format(knn.kNearestNeighbors(new_train_data, new_test_data), ".3f"))
        accuracy += knn.kNearestNeighbors(new_train_data, new_test_data)
    return accuracy / loop