Esempio n. 1
0
def objective(trial):
    nl = trial.suggest_int("num_layers", 1, 2)
    bi = trial.suggest_categorical("bidirectional", [False, True])
    model = RNN(d_w, d_h, L, emb, num_layers=nl, bidirectional=bi)

    lr = trial.suggest_loguniform("learning_rate", 1e-5, 1e-1)
    bs = trial.suggest_categorical("batch_size", [32, -1])
    model = run_train(train,
                      valid,
                      model,
                      epochs=11,
                      lr=lr,
                      batch_size=bs,
                      device=device)

    loss_eval, acc_eval = run_eval(model, valid, device=device)
    return acc_eval
Esempio n. 2
0
from knock82 import run_eval, run_train

sys.path.append(os.path.join(os.path.dirname(__file__), "../../"))
from kiyuna.utils.pickle import load  # noqa: E402 isort:skip

logging.basicConfig(level=logging.DEBUG)


d_w = 300
d_h = 50
V = get_V()
L = 4


if __name__ == "__main__":
    train = torch.load("./data/train.pt")
    valid = torch.load("./data/valid.pt")
    test = torch.load("./data/test.pt")
    device = torch.device("cuda:6")
    emb = torch.Tensor(d_w, V).normal_()
    wv = load("chap07-embeddings")
    for i, word in enumerate(_list_valid_words()):
        if word in wv:
            wv_word = wv[word]
            wv_word.flags["WRITEABLE"] = True
            emb[:, i] = torch.from_numpy(wv_word)
    rnn = RNN(d_w, d_h, L, emb, num_layers=2, bidirectional=True)
    rnn = run_train(train, valid, rnn, epochs=11, lr=1e-1, batch_size=32, device=device)
    loss, acc = run_eval(rnn, test, device=device)
    print(f"Accuracy (test): {acc:f}, Loss (test): {loss:f}")