Esempio n. 1
0
def random_rotation_generator(
    batch_size: int,
    degrees: torch.Tensor,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for ``rotate`` for a random rotate transform.

    Args:
        batch_size (int): the tensor batch size.
        degrees (torch.Tensor): range of degrees with shape (2) to select from.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - degrees (torch.Tensor): element-wise rotation degrees with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(degrees, "degrees")

    _degrees = _adapted_uniform(
        (batch_size, ),
        degrees[0].to(device=device, dtype=dtype),
        degrees[1].to(device=device, dtype=dtype),
        same_on_batch,
    )
    _degrees = _degrees.to(device=degrees.device, dtype=degrees.dtype)

    return dict(degrees=_degrees)
Esempio n. 2
0
def random_posterize_generator(
    batch_size: int,
    bits: torch.Tensor = torch.tensor([3, 5]),
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Generate random posterize parameters for a batch of images.

    Args:
        batch_size (int): the number of images.
        bits (int or tuple): Takes in an integer tuple tensor that ranged from 0 ~ 8. Default value is [3, 5].
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - bits_factor (torch.Tensor): element-wise bit factors with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(bits, 'bits', (0, 8))
    bits_factor = _adapted_uniform(
        (batch_size,), bits[0].to(device=device, dtype=dtype), bits[1].to(device=device, dtype=dtype), same_on_batch
    ).int()

    return dict(bits_factor=bits_factor.to(device=bits.device, dtype=torch.int32))
Esempio n. 3
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
        scale = torch.as_tensor(self.scale, device=device, dtype=dtype)
        ratio = torch.as_tensor(self.ratio, device=device, dtype=dtype)

        if not (isinstance(self.value, (int, float)) and self.value >= 0
                and self.value <= 1):
            raise AssertionError(
                f"'value' must be a number between 0 - 1. Got {self.value}.")
        _joint_range_check(scale, 'scale', bounds=(0, float('inf')))
        _joint_range_check(ratio, 'ratio', bounds=(0, float('inf')))

        self.scale_sampler = Uniform(scale[0], scale[1], validate_args=False)

        if ratio[0] < 1.0 and ratio[1] > 1.0:
            self.ratio_sampler1 = Uniform(ratio[0], 1, validate_args=False)
            self.ratio_sampler2 = Uniform(1, ratio[1], validate_args=False)
            self.index_sampler = Uniform(
                torch.tensor(0, device=device, dtype=dtype),
                torch.tensor(1, device=device, dtype=dtype),
                validate_args=False,
            )
        else:
            self.ratio_sampler = Uniform(ratio[0],
                                         ratio[1],
                                         validate_args=False)
        self.uniform_sampler = Uniform(
            torch.tensor(0, device=device, dtype=dtype),
            torch.tensor(1, device=device, dtype=dtype),
            validate_args=False,
        )
Esempio n. 4
0
def random_sharpness_generator(
    batch_size: int,
    sharpness: torch.Tensor = torch.tensor([0, 1.0]),
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Generate random sharpness parameters for a batch of images.

    Args:
        batch_size (int): the number of images.
        sharpness (torch.Tensor): Must be above 0. Default value is sampled from (0, 1).
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - sharpness_factor (torch.Tensor): element-wise sharpness factors with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(sharpness, 'sharpness', bounds=(0, float('inf')))

    sharpness_factor = _adapted_uniform(
        (batch_size, ),
        sharpness[0].to(device=device, dtype=dtype),
        sharpness[1].to(device=device, dtype=dtype),
        same_on_batch,
    )

    return dict(sharpness_factor=sharpness_factor.to(device=sharpness.device,
                                                     dtype=sharpness.dtype))
Esempio n. 5
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:

        idx_range = _range_bound(self.domain,
                                 'idx_range',
                                 device=device, dtype=dtype)

        _joint_range_check(idx_range, 'idx_range', (0, self.domain[1]))
        self.pl_idx_dist = Uniform(idx_range[0], idx_range[1], validate_args=False)
Esempio n. 6
0
 def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
     bits = torch.as_tensor(self.bits, device=device, dtype=dtype)
     if len(bits.size()) == 0:
         bits = bits.repeat(2)
         bits[1] = 8
     elif not (len(bits.size()) == 1 and bits.size(0) == 2):
         raise ValueError(f"'bits' shall be either a scalar or a length 2 tensor. Got {bits}.")
     _joint_range_check(bits, 'bits', (0, 8))
     self.bit_sampler = Uniform(bits[0], bits[1], validate_args=False)
Esempio n. 7
0
def random_mixup_generator(
    batch_size: int,
    p: float = 0.5,
    lambda_val: Optional[torch.Tensor] = None,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Generate mixup indexes and lambdas for a batch of inputs.

    Args:
        batch_size (int): the number of images. If batchsize == 1, the output will be as same as the input.
        p (flot): probability of applying mixup.
        lambda_val (torch.Tensor, optional): min-max strength for mixup images, ranged from [0., 1.].
            If None, it will be set to tensor([0., 1.]), which means no restrictions.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - mix_pairs (torch.Tensor): element-wise probabilities with a shape of (B,).
            - mixup_lambdas (torch.Tensor): element-wise probabilities with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.

    Examples:
        >>> rng = torch.manual_seed(0)
        >>> random_mixup_generator(5, 0.7)
        {'mixup_pairs': tensor([4, 0, 3, 1, 2]), 'mixup_lambdas': tensor([0.6323, 0.0000, 0.4017, 0.0223, 0.1689])}
    """
    _common_param_check(batch_size, same_on_batch)
    _device, _dtype = _extract_device_dtype([lambda_val])
    lambda_val = torch.as_tensor(
        [0.0, 1.0] if lambda_val is None else lambda_val,
        device=device,
        dtype=dtype)
    _joint_range_check(lambda_val, 'lambda_val', bounds=(0, 1))

    batch_probs: torch.Tensor = random_prob_generator(
        batch_size, p, same_on_batch=same_on_batch, device=device, dtype=dtype)
    mixup_pairs: torch.Tensor = torch.randperm(batch_size,
                                               device=device,
                                               dtype=dtype).long()
    mixup_lambdas: torch.Tensor = _adapted_uniform((batch_size, ),
                                                   lambda_val[0],
                                                   lambda_val[1],
                                                   same_on_batch=same_on_batch)
    mixup_lambdas = mixup_lambdas * batch_probs

    return dict(
        mixup_pairs=mixup_pairs.to(device=_device, dtype=torch.long),
        mixup_lambdas=mixup_lambdas.to(device=_device, dtype=_dtype),
    )
Esempio n. 8
0
def random_solarize_generator(
    batch_size: int,
    thresholds: torch.Tensor = torch.tensor([0.4, 0.6]),
    additions: torch.Tensor = torch.tensor([-0.1, 0.1]),
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Generate random solarize parameters for a batch of images.

    For each pixel in the image less than threshold, we add 'addition' amount to it and then clip the pixel value
    to be between 0 and 1.0

    Args:
        batch_size (int): the number of images.
        thresholds (torch.Tensor): Pixels less than threshold will selected. Otherwise, subtract 1.0 from the pixel.
            Takes in a range tensor of (0, 1). Default value will be sampled from [0.4, 0.6].
        additions (torch.Tensor): The value is between -0.5 and 0.5. Default value will be sampled from [-0.1, 0.1]
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - thresholds_factor (torch.Tensor): element-wise thresholds factors with a shape of (B,).
            - additions_factor (torch.Tensor): element-wise additions factors with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(thresholds, 'thresholds', (0, 1))
    _joint_range_check(additions, 'additions', (-0.5, 0.5))

    _device, _dtype = _extract_device_dtype([thresholds, additions])

    thresholds_factor = _adapted_uniform(
        (batch_size, ),
        thresholds[0].to(device=device, dtype=dtype),
        thresholds[1].to(device=device, dtype=dtype),
        same_on_batch,
    )

    additions_factor = _adapted_uniform(
        (batch_size, ),
        additions[0].to(device=device, dtype=dtype),
        additions[1].to(device=device, dtype=dtype),
        same_on_batch,
    )

    return dict(
        thresholds_factor=thresholds_factor.to(device=_device, dtype=_dtype),
        additions_factor=additions_factor.to(device=_device, dtype=_dtype),
    )
Esempio n. 9
0
 def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
     scale = torch.as_tensor(self.scale, device=device, dtype=dtype)
     ratio = torch.as_tensor(self.ratio, device=device, dtype=dtype)
     _joint_range_check(scale, "scale")
     _joint_range_check(ratio, "ratio")
     self.rand_sampler = Uniform(
         torch.tensor(0.0, device=device, dtype=dtype),
         torch.tensor(1.0, device=device, dtype=dtype))
     self.log_ratio_sampler = Uniform(torch.log(ratio[0]),
                                      torch.log(ratio[1]),
                                      validate_args=False)
Esempio n. 10
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
        if self.lambda_val is None:
            lambda_val = torch.tensor([0.0, 1.0], device=device, dtype=dtype)
        else:
            lambda_val = torch.as_tensor(self.lambda_val,
                                         device=device,
                                         dtype=dtype)

        _joint_range_check(lambda_val, 'lambda_val', bounds=(0, 1))
        self.lambda_sampler = Uniform(lambda_val[0],
                                      lambda_val[1],
                                      validate_args=False)
        self.prob_sampler = Bernoulli(
            torch.tensor(float(self.p), device=device, dtype=dtype))
Esempio n. 11
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
        if self.beta is None:
            self._beta = torch.tensor(1.0, device=device, dtype=dtype)
        else:
            self._beta = torch.as_tensor(self.beta, device=device, dtype=dtype)
        if self.cut_size is None:
            self._cut_size = torch.tensor([0.0, 1.0],
                                          device=device,
                                          dtype=dtype)
        else:
            self._cut_size = torch.as_tensor(self.cut_size,
                                             device=device,
                                             dtype=dtype)

        _joint_range_check(self._cut_size, 'cut_size', bounds=(0, 1))

        self.beta_sampler = Beta(self._beta, self._beta)
        self.prob_sampler = Bernoulli(
            torch.tensor(float(self.p), device=device, dtype=dtype))
        self.rand_sampler = Uniform(
            torch.tensor(0.0, device=device, dtype=dtype),
            torch.tensor(1.0, device=device, dtype=dtype),
            validate_args=False,
        )
Esempio n. 12
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
        brightness = _range_bound(self.brightness,
                                  'brightness',
                                  center=1.0,
                                  bounds=(0, 2),
                                  device=device,
                                  dtype=dtype)
        contrast: Tensor = _range_bound(self.contrast,
                                        'contrast',
                                        center=1.0,
                                        device=device,
                                        dtype=dtype)
        saturation: Tensor = _range_bound(self.saturation,
                                          'saturation',
                                          center=1.0,
                                          device=device,
                                          dtype=dtype)
        hue: Tensor = _range_bound(self.hue,
                                   'hue',
                                   bounds=(-0.5, 0.5),
                                   device=device,
                                   dtype=dtype)

        _joint_range_check(brightness, "brightness", (0, 2))
        _joint_range_check(contrast, "contrast", (0, float('inf')))
        _joint_range_check(hue, "hue", (-0.5, 0.5))
        _joint_range_check(saturation, "saturation", (0, float('inf')))

        self.brightness_sampler = Uniform(brightness[0],
                                          brightness[1],
                                          validate_args=False)
        self.contrast_sampler = Uniform(contrast[0],
                                        contrast[1],
                                        validate_args=False)
        self.hue_sampler = Uniform(hue[0], hue[1], validate_args=False)
        self.saturation_sampler = Uniform(saturation[0],
                                          saturation[1],
                                          validate_args=False)
        self.randperm = partial(torch.randperm, device=device, dtype=dtype)
Esempio n. 13
0
def random_affine_generator(
    batch_size: int,
    height: int,
    width: int,
    degrees: torch.Tensor,
    translate: Optional[torch.Tensor] = None,
    scale: Optional[torch.Tensor] = None,
    shear: Optional[torch.Tensor] = None,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for ``affine`` for a random affine transform.

    Args:
        batch_size (int): the tensor batch size.
        height (int) : height of the image.
        width (int): width of the image.
        degrees (torch.Tensor): Range of degrees to select from like (min, max).
        translate (tensor, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tensor, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (tensor, optional): Range of degrees to select from.
            Shear is a 2x2 tensor, a x-axis shear in (shear[0][0], shear[0][1]) and y-axis shear in
            (shear[1][0], shear[1][1]) will be applied. Will not apply shear by default.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - translations (torch.Tensor): element-wise translations with a shape of (B, 2).
            - center (torch.Tensor): element-wise center with a shape of (B, 2).
            - scale (torch.Tensor): element-wise scales with a shape of (B, 2).
            - angle (torch.Tensor): element-wise rotation angles with a shape of (B,).
            - sx (torch.Tensor): element-wise x-axis shears with a shape of (B,).
            - sy (torch.Tensor): element-wise y-axis shears with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(degrees, "degrees")
    if not (isinstance(width, (int, )) and isinstance(height, (int, ))
            and width > 0 and height > 0):
        raise AssertionError(
            f"`width` and `height` must be positive integers. Got {width}, {height}."
        )

    _device, _dtype = _extract_device_dtype([degrees, translate, scale, shear])
    degrees = degrees.to(device=device, dtype=dtype)
    angle = _adapted_uniform((batch_size, ), degrees[0], degrees[1],
                             same_on_batch)
    angle = angle.to(device=_device, dtype=_dtype)

    # compute tensor ranges
    if scale is not None:
        scale = scale.to(device=device, dtype=dtype)
        if not (len(scale.shape) == 1 and len(scale) in (2, 4)):
            raise AssertionError(
                f"`scale` shall have 2 or 4 elements. Got {scale}.")
        _joint_range_check(cast(torch.Tensor, scale[:2]), "scale")
        _scale = _adapted_uniform((batch_size, ), scale[0], scale[1],
                                  same_on_batch).unsqueeze(1).repeat(1, 2)
        if len(scale) == 4:
            _joint_range_check(cast(torch.Tensor, scale[2:]), "scale_y")
            _scale[:, 1] = _adapted_uniform((batch_size, ), scale[2], scale[3],
                                            same_on_batch)
        _scale = _scale.to(device=_device, dtype=_dtype)
    else:
        _scale = torch.ones((batch_size, 2), device=_device, dtype=_dtype)

    if translate is not None:
        translate = translate.to(device=device, dtype=dtype)
        if not (0.0 <= translate[0] <= 1.0 and 0.0 <= translate[1] <= 1.0
                and translate.shape == torch.Size([2])):
            raise AssertionError(
                f"Expect translate contains two elements and ranges are in [0, 1]. Got {translate}."
            )
        max_dx: torch.Tensor = translate[0] * width
        max_dy: torch.Tensor = translate[1] * height
        translations = torch.stack(
            [
                _adapted_uniform(
                    (batch_size, ), -max_dx, max_dx, same_on_batch),
                _adapted_uniform(
                    (batch_size, ), -max_dy, max_dy, same_on_batch),
            ],
            dim=-1,
        )
        translations = translations.to(device=_device, dtype=_dtype)
    else:
        translations = torch.zeros((batch_size, 2),
                                   device=_device,
                                   dtype=_dtype)

    center: torch.Tensor = torch.tensor(
        [width, height], device=_device, dtype=_dtype).view(1, 2) / 2.0 - 0.5
    center = center.expand(batch_size, -1)

    if shear is not None:
        shear = shear.to(device=device, dtype=dtype)
        _joint_range_check(cast(torch.Tensor, shear)[0], "shear")
        _joint_range_check(cast(torch.Tensor, shear)[1], "shear")
        sx = _adapted_uniform((batch_size, ), shear[0][0], shear[0][1],
                              same_on_batch)
        sy = _adapted_uniform((batch_size, ), shear[1][0], shear[1][1],
                              same_on_batch)
        sx = sx.to(device=_device, dtype=_dtype)
        sy = sy.to(device=_device, dtype=_dtype)
    else:
        sx = sy = torch.tensor([0] * batch_size, device=_device, dtype=_dtype)

    return dict(translations=translations,
                center=center,
                scale=_scale,
                angle=angle,
                sx=sx,
                sy=sy)
Esempio n. 14
0
def random_cutmix_generator(
    batch_size: int,
    width: int,
    height: int,
    p: float = 0.5,
    num_mix: int = 1,
    beta: Optional[torch.Tensor] = None,
    cut_size: Optional[torch.Tensor] = None,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Generate cutmix indexes and lambdas for a batch of inputs.

    Args:
        batch_size (int): the number of images. If batchsize == 1, the output will be as same as the input.
        width (int): image width.
        height (int): image height.
        p (float): probability of applying cutmix.
        num_mix (int): number of images to mix with. Default is 1.
        beta (torch.Tensor, optional): hyperparameter for generating cut size from beta distribution.
            If None, it will be set to 1.
        cut_size (torch.Tensor, optional): controlling the minimum and maximum cut ratio from [0, 1].
            If None, it will be set to [0, 1], which means no restriction.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - mix_pairs (torch.Tensor): element-wise probabilities with a shape of (num_mix, B).
            - crop_src (torch.Tensor): element-wise probabilities with a shape of (num_mix, B, 4, 2).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.

    Examples:
        >>> rng = torch.manual_seed(0)
        >>> random_cutmix_generator(3, 224, 224, p=0.5, num_mix=2)
        {'mix_pairs': tensor([[2, 0, 1],
                [1, 2, 0]]), 'crop_src': tensor([[[[ 35.,  25.],
                  [208.,  25.],
                  [208., 198.],
                  [ 35., 198.]],
        <BLANKLINE>
                 [[156., 137.],
                  [155., 137.],
                  [155., 136.],
                  [156., 136.]],
        <BLANKLINE>
                 [[  3.,  12.],
                  [210.,  12.],
                  [210., 219.],
                  [  3., 219.]]],
        <BLANKLINE>
        <BLANKLINE>
                [[[ 83., 125.],
                  [177., 125.],
                  [177., 219.],
                  [ 83., 219.]],
        <BLANKLINE>
                 [[ 54.,   8.],
                  [205.,   8.],
                  [205., 159.],
                  [ 54., 159.]],
        <BLANKLINE>
                 [[ 97.,  70.],
                  [ 96.,  70.],
                  [ 96.,  69.],
                  [ 97.,  69.]]]])}
    """
    _device, _dtype = _extract_device_dtype([beta, cut_size])
    beta = torch.as_tensor(1.0 if beta is None else beta,
                           device=device,
                           dtype=dtype)
    cut_size = torch.as_tensor([0.0, 1.0] if cut_size is None else cut_size,
                               device=device,
                               dtype=dtype)
    if not (num_mix >= 1 and isinstance(num_mix, (int, ))):
        raise AssertionError(
            f"`num_mix` must be an integer greater than 1. Got {num_mix}.")
    if not (type(height) is int and height > 0 and type(width) is int
            and width > 0):
        raise AssertionError(
            f"'height' and 'width' must be integers. Got {height}, {width}.")
    _joint_range_check(cut_size, 'cut_size', bounds=(0, 1))
    _common_param_check(batch_size, same_on_batch)

    if batch_size == 0:
        return dict(
            mix_pairs=torch.zeros([0, 3], device=_device, dtype=torch.long),
            crop_src=torch.zeros([0, 4, 2], device=_device, dtype=torch.long),
        )

    batch_probs: torch.Tensor = random_prob_generator(batch_size * num_mix,
                                                      p,
                                                      same_on_batch,
                                                      device=device,
                                                      dtype=dtype)
    mix_pairs: torch.Tensor = torch.rand(num_mix,
                                         batch_size,
                                         device=device,
                                         dtype=dtype).argsort(dim=1)
    cutmix_betas: torch.Tensor = _adapted_beta((batch_size * num_mix, ),
                                               beta,
                                               beta,
                                               same_on_batch=same_on_batch)
    # Note: torch.clamp does not accept tensor, cutmix_betas.clamp(cut_size[0], cut_size[1]) throws:
    # Argument 1 to "clamp" of "_TensorBase" has incompatible type "Tensor"; expected "float"
    cutmix_betas = torch.min(torch.max(cutmix_betas, cut_size[0]), cut_size[1])
    cutmix_rate = torch.sqrt(1.0 - cutmix_betas) * batch_probs

    cut_height = (cutmix_rate * height).floor().to(device=device, dtype=_dtype)
    cut_width = (cutmix_rate * width).floor().to(device=device, dtype=_dtype)
    _gen_shape = (1, )

    if same_on_batch:
        _gen_shape = (cut_height.size(0), )
        cut_height = cut_height[0]
        cut_width = cut_width[0]

    # Reserve at least 1 pixel for cropping.
    x_start = (_adapted_uniform(
        _gen_shape,
        torch.zeros_like(cut_width, device=device, dtype=dtype),
        (width - cut_width - 1).to(device=device, dtype=dtype),
        same_on_batch,
    ).floor().to(device=device, dtype=_dtype))
    y_start = (_adapted_uniform(
        _gen_shape,
        torch.zeros_like(cut_height, device=device, dtype=dtype),
        (height - cut_height - 1).to(device=device, dtype=dtype),
        same_on_batch,
    ).floor().to(device=device, dtype=_dtype))

    crop_src = bbox_generator(x_start.squeeze(), y_start.squeeze(), cut_width,
                              cut_height)

    # (B * num_mix, 4, 2) => (num_mix, batch_size, 4, 2)
    crop_src = crop_src.view(num_mix, batch_size, 4, 2)

    return dict(
        mix_pairs=mix_pairs.to(device=_device, dtype=torch.long),
        crop_src=crop_src.floor().to(device=_device, dtype=_dtype),
    )
Esempio n. 15
0
def random_crop_size_generator(
    batch_size: int,
    size: Tuple[int, int],
    scale: torch.Tensor,
    ratio: torch.Tensor,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get cropping heights and widths for ```crop``` transformation for resized crop transform.

    Args:
        batch_size (int): the tensor batch size.
        size (Tuple[int, int]): expected output size of each edge.
        scale (torch.Tensor): range of size of the origin size cropped with (2,) shape.
        ratio (torch.Tensor): range of aspect ratio of the origin aspect ratio cropped with (2,) shape.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - size (torch.Tensor): element-wise cropping sizes with a shape of (B, 2).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.

    Examples:
        >>> _ = torch.manual_seed(42)
        >>> random_crop_size_generator(3, (30, 30), scale=torch.tensor([.7, 1.3]), ratio=torch.tensor([.9, 1.]))
        {'size': tensor([[29., 29.],
                [27., 28.],
                [26., 29.]])}
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(scale, "scale")
    _joint_range_check(ratio, "ratio")
    if not (len(size) == 2 and type(size[0]) is int and size[1] > 0
            and type(size[1]) is int and size[1] > 0):
        raise AssertionError(
            f"'height' and 'width' must be integers. Got {size}.")

    _device, _dtype = _extract_device_dtype([scale, ratio])

    if batch_size == 0:
        return dict(size=torch.zeros([0, 2], device=_device, dtype=_dtype))

    scale = scale.to(device=device, dtype=dtype)
    ratio = ratio.to(device=device, dtype=dtype)
    # 10 trails for each element
    area = _adapted_uniform((batch_size, 10), scale[0] * size[0] * size[1],
                            scale[1] * size[0] * size[1], same_on_batch)
    log_ratio = _adapted_uniform((batch_size, 10), torch.log(ratio[0]),
                                 torch.log(ratio[1]), same_on_batch)
    aspect_ratio = torch.exp(log_ratio)

    w = torch.sqrt(area * aspect_ratio).round().floor()
    h = torch.sqrt(area / aspect_ratio).round().floor()
    # Element-wise w, h condition
    cond = ((0 < w) * (w < size[0]) * (0 < h) * (h < size[1])).int()

    # torch.argmax is not reproducible across devices: https://github.com/pytorch/pytorch/issues/17738
    # Here, we will select the first occurrence of the duplicated elements.
    cond_bool, argmax_dim1 = ((cond.cumsum(1) == 1) & cond.bool()).max(1)
    h_out = w[torch.arange(0, batch_size, device=device, dtype=torch.long),
              argmax_dim1]
    w_out = h[torch.arange(0, batch_size, device=device, dtype=torch.long),
              argmax_dim1]

    if not cond_bool.all():
        # Fallback to center crop
        in_ratio = float(size[0]) / float(size[1])
        if in_ratio < ratio.min():
            h_ct = torch.tensor(size[0], device=device, dtype=dtype)
            w_ct = torch.round(h_ct / ratio.min())
        elif in_ratio > ratio.min():
            w_ct = torch.tensor(size[1], device=device, dtype=dtype)
            h_ct = torch.round(w_ct * ratio.min())
        else:  # whole image
            h_ct = torch.tensor(size[0], device=device, dtype=dtype)
            w_ct = torch.tensor(size[1], device=device, dtype=dtype)
        h_ct = h_ct.floor()
        w_ct = w_ct.floor()

        h_out = h_out.where(cond_bool, h_ct)
        w_out = w_out.where(cond_bool, w_ct)

    return dict(size=torch.stack([h_out, w_out], dim=1).to(device=_device,
                                                           dtype=_dtype))
Esempio n. 16
0
def random_motion_blur_generator(
    batch_size: int,
    kernel_size: Union[int, Tuple[int, int]],
    angle: torch.Tensor,
    direction: torch.Tensor,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for motion blur.

    Args:
        batch_size (int): the tensor batch size.
        kernel_size (int or (int, int)): motion kernel size (odd and positive) or range.
        angle (torch.Tensor): angle of the motion blur in degrees (anti-clockwise rotation).
        direction (torch.Tensor): forward/backward direction of the motion blur.
            Lower values towards -1.0 will point the motion blur towards the back (with
            angle provided via angle), while higher values towards 1.0 will point the motion
            blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - ksize_factor (torch.Tensor): element-wise kernel size factors with a shape of (B,).
            - angle_factor (torch.Tensor): element-wise angle factors with a shape of (B,).
            - direction_factor (torch.Tensor): element-wise direction factors with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _joint_range_check(angle, 'angle')
    _joint_range_check(direction, 'direction', (-1, 1))

    _device, _dtype = _extract_device_dtype([angle, direction])

    if isinstance(kernel_size, int):
        if not (kernel_size >= 3 and kernel_size % 2 == 1):
            raise AssertionError(
                f"`kernel_size` must be odd and greater than 3. Got {kernel_size}."
            )
        ksize_factor = torch.tensor([kernel_size] * batch_size,
                                    device=device,
                                    dtype=dtype)
    elif isinstance(kernel_size, tuple):
        # kernel_size is fixed across the batch
        if len(kernel_size) != 2:
            raise AssertionError(
                f"`kernel_size` must be (2,) if it is a tuple. Got {kernel_size}."
            )
        ksize_factor = (_adapted_uniform((batch_size, ),
                                         kernel_size[0] // 2,
                                         kernel_size[1] // 2,
                                         same_on_batch=True).int() * 2 + 1)
    else:
        raise TypeError(f"Unsupported type: {type(kernel_size)}")

    angle_factor = _adapted_uniform((batch_size, ), angle[0].to(device=device,
                                                                dtype=dtype),
                                    angle[1].to(device=device,
                                                dtype=dtype), same_on_batch)

    direction_factor = _adapted_uniform(
        (batch_size, ),
        direction[0].to(device=device, dtype=dtype),
        direction[1].to(device=device, dtype=dtype),
        same_on_batch,
    )

    return dict(
        ksize_factor=ksize_factor.to(device=_device, dtype=torch.int32),
        angle_factor=angle_factor.to(device=_device, dtype=_dtype),
        direction_factor=direction_factor.to(device=_device, dtype=_dtype),
    )
Esempio n. 17
0
def random_rectangles_params_generator(
    batch_size: int,
    height: int,
    width: int,
    scale: torch.Tensor,
    ratio: torch.Tensor,
    value: float = 0.0,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for ```erasing``` transformation for erasing transform.

    Args:
        batch_size (int): the tensor batch size.
        height (int) : height of the image.
        width (int): width of the image.
        scale (torch.Tensor): range of size of the origin size cropped. Shape (2).
        ratio (torch.Tensor): range of aspect ratio of the origin aspect ratio cropped. Shape (2).
        value (float): value to be filled in the erased area.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - widths (torch.Tensor): element-wise erasing widths with a shape of (B,).
            - heights (torch.Tensor): element-wise erasing heights with a shape of (B,).
            - xs (torch.Tensor): element-wise erasing x coordinates with a shape of (B,).
            - ys (torch.Tensor): element-wise erasing y coordinates with a shape of (B,).
            - values (torch.Tensor): element-wise filling values with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _common_param_check(batch_size, same_on_batch)
    _device, _dtype = _extract_device_dtype([ratio, scale])
    if not (type(height) is int and height > 0 and type(width) is int
            and width > 0):
        raise AssertionError(
            f"'height' and 'width' must be integers. Got {height}, {width}.")
    if not (isinstance(value, (int, float)) and value >= 0 and value <= 1):
        raise AssertionError(
            f"'value' must be a number between 0 - 1. Got {value}.")
    _joint_range_check(scale, 'scale', bounds=(0, float('inf')))
    _joint_range_check(ratio, 'ratio', bounds=(0, float('inf')))

    images_area = height * width
    target_areas = (_adapted_uniform(
        (batch_size, ),
        scale[0].to(device=device, dtype=dtype),
        scale[1].to(device=device, dtype=dtype),
        same_on_batch,
    ) * images_area)

    if ratio[0] < 1.0 and ratio[1] > 1.0:
        aspect_ratios1 = _adapted_uniform(
            (batch_size, ), ratio[0].to(device=device,
                                        dtype=dtype), 1, same_on_batch)
        aspect_ratios2 = _adapted_uniform(
            (batch_size, ), 1, ratio[1].to(device=device,
                                           dtype=dtype), same_on_batch)
        if same_on_batch:
            rand_idxs = (torch.round(
                _adapted_uniform(
                    (1, ),
                    torch.tensor(0, device=device, dtype=dtype),
                    torch.tensor(1, device=device, dtype=dtype),
                    same_on_batch,
                )).repeat(batch_size).bool())
        else:
            rand_idxs = torch.round(
                _adapted_uniform(
                    (batch_size, ),
                    torch.tensor(0, device=device, dtype=dtype),
                    torch.tensor(1, device=device, dtype=dtype),
                    same_on_batch,
                )).bool()
        aspect_ratios = torch.where(rand_idxs, aspect_ratios1, aspect_ratios2)
    else:
        aspect_ratios = _adapted_uniform(
            (batch_size, ),
            ratio[0].to(device=device, dtype=dtype),
            ratio[1].to(device=device, dtype=dtype),
            same_on_batch,
        )

    # based on target areas and aspect ratios, rectangle params are computed
    heights = torch.min(
        torch.max(torch.round((target_areas * aspect_ratios)**(1 / 2)),
                  torch.tensor(1.0, device=device, dtype=dtype)),
        torch.tensor(height, device=device, dtype=dtype),
    )

    widths = torch.min(
        torch.max(torch.round((target_areas / aspect_ratios)**(1 / 2)),
                  torch.tensor(1.0, device=device, dtype=dtype)),
        torch.tensor(width, device=device, dtype=dtype),
    )

    xs_ratio = _adapted_uniform(
        (batch_size, ),
        torch.tensor(0, device=device, dtype=dtype),
        torch.tensor(1, device=device, dtype=dtype),
        same_on_batch,
    )
    ys_ratio = _adapted_uniform(
        (batch_size, ),
        torch.tensor(0, device=device, dtype=dtype),
        torch.tensor(1, device=device, dtype=dtype),
        same_on_batch,
    )

    xs = xs_ratio * (torch.tensor(width, device=device, dtype=dtype) - widths +
                     1)
    ys = ys_ratio * (torch.tensor(height, device=device, dtype=dtype) -
                     heights + 1)

    return dict(
        widths=widths.floor().to(device=_device, dtype=_dtype),
        heights=heights.floor().to(device=_device, dtype=_dtype),
        xs=xs.floor().to(device=_device, dtype=_dtype),
        ys=ys.floor().to(device=_device, dtype=_dtype),
        values=torch.tensor([value] * batch_size, device=_device,
                            dtype=_dtype),
    )
Esempio n. 18
0
def random_motion_blur_generator3d(
    batch_size: int,
    kernel_size: Union[int, Tuple[int, int]],
    angle: torch.Tensor,
    direction: torch.Tensor,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32,
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for motion blur.

    Args:
        batch_size (int): the tensor batch size.
        kernel_size (int or (int, int)): motion kernel size (odd and positive) or range.
        angle (torch.Tensor): yaw, pitch and roll range of the motion blur in degrees :math:`(3, 2)`.
        direction (torch.Tensor): forward/backward direction of the motion blur.
            Lower values towards -1.0 will point the motion blur towards the back (with
            angle provided via angle), while higher values towards 1.0 will point the motion
            blur forward. A value of 0.0 leads to a uniformly (but still angled) motion blur.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - ksize_factor (torch.Tensor): element-wise kernel size factors with a shape of (B,).
            - angle_factor (torch.Tensor): element-wise center with a shape of (B,).
            - direction_factor (torch.Tensor): element-wise scales with a shape of (B,).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.
    """
    _device, _dtype = _extract_device_dtype([angle, direction])
    _joint_range_check(direction, 'direction', (-1, 1))
    if isinstance(kernel_size, int):
        if not (kernel_size >= 3 and kernel_size % 2 == 1):
            raise AssertionError(f"`kernel_size` must be odd and greater than 3. Got {kernel_size}.")
        ksize_factor = torch.tensor([kernel_size] * batch_size, device=device, dtype=dtype).int()
    elif isinstance(kernel_size, tuple):
        if not (len(kernel_size) == 2 and kernel_size[0] >= 3 and kernel_size[0] <= kernel_size[1]):
            raise AssertionError(f"`kernel_size` must be greater than 3. Got range {kernel_size}.")
        # kernel_size is fixed across the batch
        ksize_factor = (
            _adapted_uniform((batch_size,), kernel_size[0] // 2, kernel_size[1] // 2, same_on_batch=True).int() * 2 + 1
        )
    else:
        raise TypeError(f"Unsupported type: {type(kernel_size)}")

    if angle.shape != torch.Size([3, 2]):
        raise AssertionError(f"'angle' must be the shape of (3, 2). Got {angle.shape}.")
    angle = angle.to(device=device, dtype=dtype)
    yaw = _adapted_uniform((batch_size,), angle[0][0], angle[0][1], same_on_batch)
    pitch = _adapted_uniform((batch_size,), angle[1][0], angle[1][1], same_on_batch)
    roll = _adapted_uniform((batch_size,), angle[2][0], angle[2][1], same_on_batch)
    angle_factor = torch.stack([yaw, pitch, roll], dim=1)

    direction = direction.to(device=device, dtype=dtype)
    direction_factor = _adapted_uniform((batch_size,), direction[0], direction[1], same_on_batch)

    return dict(
        ksize_factor=ksize_factor.to(device=_device),
        angle_factor=angle_factor.to(device=_device, dtype=_dtype),
        direction_factor=direction_factor.to(device=_device, dtype=_dtype),
    )
Esempio n. 19
0
    def make_samplers(self, device: torch.device, dtype: torch.dtype) -> None:
        _degrees = _range_bound(self.degrees, 'degrees', 0,
                                (-360, 360)).to(device=device, dtype=dtype)
        _translate = (
            self.translate if self.translate is None else _range_bound(
                self.translate, 'translate', bounds=(0, 1),
                check='singular').to(device=device, dtype=dtype))
        _scale: Optional[torch.Tensor] = None
        if self.scale is not None:
            if len(self.scale) == 2:
                _scale = _range_bound(self.scale[:2],
                                      'scale',
                                      bounds=(0, float('inf')),
                                      check='singular').to(device=device,
                                                           dtype=dtype)
            elif len(self.scale) == 4:
                _scale = torch.cat([
                    _range_bound(self.scale[:2],
                                 'scale_x',
                                 bounds=(0, float('inf')),
                                 check='singular'),
                    _range_bound(
                        self.scale[2:],
                        'scale_y',
                        bounds=(0, float('inf')),
                        check='singular'  # type:ignore
                    ),
                ]).to(device=device, dtype=dtype)
            else:
                raise ValueError(
                    f"'scale' expected to be either 2 or 4 elements. Got {self.scale}"
                )
        _shear: Optional[torch.Tensor] = None
        if self.shear is not None:
            shear = torch.as_tensor(self.shear, device=device, dtype=dtype)
            if shear.shape == torch.Size([2, 2]):
                _shear = shear
            else:
                _shear = torch.stack([
                    _range_bound(shear if shear.dim() == 0 else shear[:2],
                                 'shear-x', 0, (-360, 360)),
                    torch.tensor([0, 0], device=device, dtype=dtype)
                    if shear.dim() == 0 or len(shear) == 2 else _range_bound(
                        shear[2:], 'shear-y', 0, (-360, 360)),
                ])

        translate_x_sampler: Optional[Uniform] = None
        translate_y_sampler: Optional[Uniform] = None
        scale_2_sampler: Optional[Uniform] = None
        scale_4_sampler: Optional[Uniform] = None
        shear_x_sampler: Optional[Uniform] = None
        shear_y_sampler: Optional[Uniform] = None

        if _translate is not None:
            translate_x_sampler = Uniform(-_translate[0],
                                          _translate[0],
                                          validate_args=False)
            translate_y_sampler = Uniform(-_translate[1],
                                          _translate[1],
                                          validate_args=False)
        if _scale is not None:
            if len(_scale) == 2:
                scale_2_sampler = Uniform(_scale[0],
                                          _scale[1],
                                          validate_args=False)
            elif len(_scale) == 4:
                scale_2_sampler = Uniform(_scale[0],
                                          _scale[1],
                                          validate_args=False)
                scale_4_sampler = Uniform(_scale[2],
                                          _scale[3],
                                          validate_args=False)
            else:
                raise ValueError(
                    f"'scale' expected to be either 2 or 4 elements. Got {self.scale}"
                )
        if _shear is not None:
            _joint_range_check(cast(torch.Tensor, _shear)[0], "shear")
            _joint_range_check(cast(torch.Tensor, _shear)[1], "shear")
            shear_x_sampler = Uniform(_shear[0][0],
                                      _shear[0][1],
                                      validate_args=False)
            shear_y_sampler = Uniform(_shear[1][0],
                                      _shear[1][1],
                                      validate_args=False)

        self.degree_sampler = Uniform(_degrees[0],
                                      _degrees[1],
                                      validate_args=False)
        self.translate_x_sampler = translate_x_sampler
        self.translate_y_sampler = translate_y_sampler
        self.scale_2_sampler = scale_2_sampler
        self.scale_4_sampler = scale_4_sampler
        self.shear_x_sampler = shear_x_sampler
        self.shear_y_sampler = shear_y_sampler