Esempio n. 1
0
    def test_random_flips(self, device, dtype):
        inp = torch.randn(1, 3, 510, 1020, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)

        expected_bbox_vertical_flip = torch.tensor(
            [[[355, 499], [660, 499], [660, 259], [355, 259]]],
            device=device,
            dtype=dtype)
        expected_bbox_horizontal_flip = torch.tensor(
            [[[664, 10], [359, 10], [359, 250], [664, 250]]],
            device=device,
            dtype=dtype)

        aug_ver = K.AugmentationSequential(K.RandomVerticalFlip(p=1.0),
                                           data_keys=["input", "bbox"],
                                           return_transform=False,
                                           same_on_batch=False)

        aug_hor = K.AugmentationSequential(K.RandomHorizontalFlip(p=1.0),
                                           data_keys=["input", "bbox"],
                                           return_transform=False,
                                           same_on_batch=False)

        out_ver = aug_ver(inp.clone(), bbox.clone())
        out_hor = aug_hor(inp.clone(), bbox.clone())

        assert_close(out_ver[1], expected_bbox_vertical_flip)
        assert_close(out_hor[1], expected_bbox_horizontal_flip)
Esempio n. 2
0
    def test_individual_forward_and_inverse(self, device, dtype):
        inp = torch.randn(1, 3, 1000, 500, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)
        keypoints = torch.tensor([[[465, 115], [545, 116]]],
                                 device=device,
                                 dtype=dtype)
        mask = bbox_to_mask(
            torch.tensor([[[155, 0], [900, 0], [900, 400], [155, 400]]],
                         device=device,
                         dtype=dtype), 1000, 500)[:, None].float()

        aug = K.AugmentationSequential(
            K.RandomAffine(360, p=1.0, return_transform=False),
            data_keys=['input', 'mask', 'bbox', 'keypoints'])
        reproducibility_test((inp, mask, bbox, keypoints), aug)

        aug = K.AugmentationSequential(
            K.RandomAffine(360, p=1.0, return_transform=True))
        assert aug(inp, data_keys=['input'])[0].shape == inp.shape
        aug = K.AugmentationSequential(
            K.RandomAffine(360, p=1.0, return_transform=False))
        assert aug(inp, data_keys=['input']).shape == inp.shape
        assert aug(mask, data_keys=['mask'],
                   params=aug._params).shape == mask.shape

        assert aug.inverse(inp, data_keys=['input']).shape == inp.shape
        assert aug.inverse(bbox, data_keys=['bbox']).shape == bbox.shape
        assert aug.inverse(keypoints,
                           data_keys=['keypoints']).shape == keypoints.shape
        assert aug.inverse(mask, data_keys=['mask']).shape == mask.shape
Esempio n. 3
0
    def test_inverse_and_forward_return_transform(self, random_apply, device,
                                                  dtype):
        inp = torch.randn(1, 3, 1000, 500, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)
        bbox_2 = [
            # torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]], device=device, dtype=dtype),
            torch.tensor(
                [[[355, 10], [660, 10], [660, 250], [355, 250]],
                 [[355, 10], [660, 10], [660, 250], [355, 250]]],
                device=device,
                dtype=dtype,
            )
        ]
        bbox_wh = torch.tensor([[[30, 40, 100, 100]]],
                               device=device,
                               dtype=dtype)
        bbox_wh_2 = [
            # torch.tensor([[30, 40, 100, 100]], device=device, dtype=dtype),
            torch.tensor([[30, 40, 100, 100], [30, 40, 100, 100]],
                         device=device,
                         dtype=dtype)
        ]
        keypoints = torch.tensor([[[465, 115], [545, 116]]],
                                 device=device,
                                 dtype=dtype)
        mask = bbox_to_mask(
            torch.tensor([[[155, 0], [900, 0], [900, 400], [155, 400]]],
                         device=device,
                         dtype=dtype), 1000, 500)[:, None].float()
        aug = K.AugmentationSequential(
            K.ImageSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                              K.RandomAffine(360, p=1.0)),
            K.AugmentationSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                                     K.RandomAffine(360, p=1.0)),
            K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
            K.RandomAffine(360, p=1.0),
            data_keys=[
                "input", "mask", "bbox", "keypoints", "bbox", "BBOX_XYWH",
                "BBOX_XYWH"
            ],
            random_apply=random_apply,
        )
        with pytest.raises(
                Exception):  # No parameters available for inversing.
            aug.inverse(inp, mask, bbox, keypoints, bbox_2, bbox_wh, bbox_wh_2)

        out = aug(inp, mask, bbox, keypoints, bbox_2, bbox_wh, bbox_wh_2)
        assert out[0].shape == inp.shape
        assert out[1].shape == mask.shape
        assert out[2].shape == bbox.shape
        assert out[3].shape == keypoints.shape

        reproducibility_test(
            (inp, mask, bbox, keypoints, bbox_2, bbox_wh, bbox_wh_2), aug)
Esempio n. 4
0
    def test_individual_forward_and_inverse(self, device, dtype):
        inp = torch.randn(1, 3, 1000, 500, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)
        keypoints = torch.tensor([[[465, 115], [545, 116]]],
                                 device=device,
                                 dtype=dtype)
        mask = bbox_to_mask(
            torch.tensor([[[155, 0], [900, 0], [900, 400], [155, 400]]],
                         device=device,
                         dtype=dtype), 500, 1000)[:, None].float()
        crop_size = (200, 200)

        aug = K.AugmentationSequential(
            K.ImageSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                              K.RandomAffine(360, p=1.0)),
            K.AugmentationSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                                     K.RandomAffine(360, p=1.0)),
            K.RandomAffine(360, p=1.0),
            K.RandomCrop(crop_size,
                         padding=1,
                         cropping_mode='resample',
                         fill=0),
            data_keys=['input', 'mask', 'bbox', 'keypoints'],
        )
        reproducibility_test((inp, mask, bbox, keypoints), aug)

        out = aug(inp, mask, bbox, keypoints)
        assert out[0].shape == (*inp.shape[:2], *crop_size)
        assert out[1].shape == (*mask.shape[:2], *crop_size)
        assert out[2].shape == bbox.shape
        assert out[3].shape == keypoints.shape

        out_inv = aug.inverse(*out)
        assert out_inv[0].shape == inp.shape
        assert out_inv[1].shape == mask.shape
        assert out_inv[2].shape == bbox.shape
        assert out_inv[3].shape == keypoints.shape

        aug = K.AugmentationSequential(K.RandomAffine(360, p=1.0))
        assert aug(inp, data_keys=['input']).shape == inp.shape
        aug = K.AugmentationSequential(K.RandomAffine(360, p=1.0))
        assert aug(inp, data_keys=['input']).shape == inp.shape
        assert aug(mask, data_keys=['mask'],
                   params=aug._params).shape == mask.shape

        assert aug.inverse(inp, data_keys=['input']).shape == inp.shape
        assert aug.inverse(bbox, data_keys=['bbox']).shape == bbox.shape
        assert aug.inverse(keypoints,
                           data_keys=['keypoints']).shape == keypoints.shape
        assert aug.inverse(mask, data_keys=['mask']).shape == mask.shape
Esempio n. 5
0
    def test_forward_and_inverse_return_transform(self, random_apply, device,
                                                  dtype):
        inp = torch.randn(1, 3, 1000, 500, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)
        keypoints = torch.tensor([[[465, 115], [545, 116]]],
                                 device=device,
                                 dtype=dtype)
        mask = bbox_to_mask(
            torch.tensor([[[155, 0], [900, 0], [900, 400], [155, 400]]],
                         device=device,
                         dtype=dtype), 1000, 500)[:, None].float()
        aug = K.AugmentationSequential(
            K.ImageSequential(
                K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                K.RandomAffine(360, p=1.0, return_transform=True)),
            K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0, return_transform=True),
            K.RandomAffine(360, p=1.0, return_transform=True),
            data_keys=["input", "mask", "bbox", "keypoints"],
            random_apply=random_apply,
        )
        out = aug(inp, mask, bbox, keypoints)
        assert out[0][0].shape == inp.shape
        assert out[1].shape == mask.shape
        assert out[2].shape == bbox.shape
        assert out[3].shape == keypoints.shape

        reproducibility_test((inp, mask, bbox, keypoints), aug)

        out_inv = aug.inverse(*out)
        assert out_inv[0].shape == inp.shape
        assert out_inv[1].shape == mask.shape
        assert out_inv[2].shape == bbox.shape
        assert out_inv[3].shape == keypoints.shape
Esempio n. 6
0
    def test_video(self, device, dtype):
        input = torch.randn(2, 3, 5, 6, device=device, dtype=dtype)[None]
        bbox = torch.tensor([[
            [1., 1.],
            [2., 1.],
            [2., 2.],
            [1., 2.],
        ]], device=device, dtype=dtype).expand(2, -1, -1)[None]
        points = torch.tensor([[[1., 1.]]], device=device, dtype=dtype).expand(2, -1, -1)[None]
        aug_list = K.AugmentationSequential(
            K.VideoSequential(
                kornia.augmentation.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                kornia.augmentation.RandomAffine(360, p=1.0),
            ),
            data_keys=["input", "mask", "bbox", "keypoints"]
        )
        out = aug_list(input, input, bbox, points)
        assert out[0].shape == input.shape
        assert out[1].shape == input.shape
        assert out[2].shape == bbox.shape
        assert out[3].shape == points.shape

        out_inv = aug_list.inverse(*out)
        assert out_inv[0].shape == input.shape
        assert out_inv[1].shape == input.shape
        assert out_inv[2].shape == bbox.shape
        assert out_inv[3].shape == points.shape
Esempio n. 7
0
 def test_jit(self, device, dtype):
     B, C, H, W = 2, 3, 4, 4
     img = torch.ones(B, C, H, W, device=device, dtype=dtype)
     op = K.AugmentationSequential(K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
                                   K.RandomAffine(360, p=1.0),
                                   same_on_batch=True)
     op_jit = torch.jit.script(op)
     assert_close(op(img), op_jit(img))
Esempio n. 8
0
    def test_random_crops_and_flips(self, device, dtype):
        width, height = 100, 100
        crop_width, crop_height = 3, 3
        input = torch.randn(3, 3, width, height, device=device, dtype=dtype)
        bbox = torch.tensor([[[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                              [0.0, 0.0, 2.0, 1.0]]],
                            device=device,
                            dtype=dtype).expand(3, -1, -1)
        aug = K.AugmentationSequential(
            K.RandomCrop((crop_width, crop_height),
                         padding=1,
                         cropping_mode='resample',
                         fill=0),
            K.RandomHorizontalFlip(p=1.0),
            data_keys=["input", "bbox_xyxy"],
        )

        reproducibility_test((input, bbox), aug)

        _params = aug.forward_parameters(input.shape)
        # specifying the crop locations allows us to compute by hand the expected outputs
        crop_locations = torch.tensor(
            [[1.0, 2.0], [1.0, 1.0], [2.0, 0.0]],
            device=_params[0].data['src'].device,
            dtype=_params[0].data['src'].dtype,
        )
        crops = crop_locations.expand(4, -1, -1).permute(1, 0, 2).clone()
        crops[:, 1:3, 0] += crop_width - 1
        crops[:, 2:4, 1] += crop_height - 1
        _params[0].data['src'] = crops

        # expected output bboxes after crop for specified crop locations and crop size (3,3)
        expected_out_bbox = torch.tensor(
            [
                [[1.0, 0.0, 2.0, 1.0], [0.0, -1.0, 1.0, 1.0],
                 [0.0, -1.0, 2.0, 0.0]],
                [[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                 [0.0, 0.0, 2.0, 1.0]],
                [[0.0, 2.0, 1.0, 3.0], [-1.0, 1.0, 0.0, 3.0],
                 [-1.0, 1.0, 1.0, 2.0]],
            ],
            device=device,
            dtype=dtype,
        )
        # horizontally flip boxes based on crop width
        xmins = expected_out_bbox[..., 0].clone()
        xmaxs = expected_out_bbox[..., 2].clone()
        expected_out_bbox[..., 0] = crop_width - xmaxs
        expected_out_bbox[..., 2] = crop_width - xmins

        out = aug(input, bbox, params=_params)
        assert out[1].shape == bbox.shape
        assert_close(out[1], expected_out_bbox, atol=1e-4, rtol=1e-4)

        out_inv = aug.inverse(*out)
        assert out_inv[1].shape == bbox.shape
        assert_close(out_inv[1], bbox, atol=1e-4, rtol=1e-4)
Esempio n. 9
0
 def test_3d_augmentations(self, device, dtype):
     input = torch.randn(2, 2, 3, 5, 6, device=device, dtype=dtype)
     aug_list = K.AugmentationSequential(
         K.RandomAffine3D(360., p=1.),
         K.RandomHorizontalFlip3D(p=1.),
         data_keys=["input"],
     )
     out = aug_list(input)
     assert out.shape == input.shape
Esempio n. 10
0
    def test_random_erasing(self, device, dtype):
        fill_value = 0.5
        input = torch.randn(3, 3, 100, 100, device=device, dtype=dtype)
        aug = K.AugmentationSequential(
            K.RandomErasing(p=1., value=fill_value),
            data_keys=["input", "mask"],
        )

        reproducibility_test((input, input), aug)

        out = aug(input, input)
        assert torch.all(out[1][out[0] == fill_value] == 0.)
Esempio n. 11
0
    def test_forward_and_inverse_return_transform(self, random_apply, device,
                                                  dtype):
        inp = torch.randn(1, 3, 1000, 500, device=device, dtype=dtype)
        bbox = torch.tensor([[[355, 10], [660, 10], [660, 250], [355, 250]]],
                            device=device,
                            dtype=dtype)
        keypoints = torch.tensor([[[465, 115], [545, 116]]],
                                 device=device,
                                 dtype=dtype)
        mask = bbox_to_mask(
            torch.tensor([[[155, 0], [900, 0], [900, 400], [155, 400]]],
                         device=device,
                         dtype=dtype), 1000, 500)[:, None].float()
        aug = K.AugmentationSequential(
            K.ImageSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                              K.RandomAffine(360, p=1.0)),
            K.AugmentationSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                                     K.RandomAffine(360, p=1.0)),
            K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
            K.RandomAffine(360, p=1.0),
            data_keys=["input", "mask", "bbox", "keypoints"],
            random_apply=random_apply,
        )
        out = aug(inp, mask, bbox, keypoints)
        assert out[0].shape == inp.shape
        assert out[1].shape == mask.shape
        assert out[2].shape == bbox.shape
        assert out[3].shape == keypoints.shape

        reproducibility_test((inp, mask, bbox, keypoints), aug)

        # TODO(jian): we sometimes throw the following error
        # AttributeError: 'tuple' object has no attribute 'shape'
        out_inv = aug.inverse(*out)
        assert out_inv[0].shape == inp.shape
        assert out_inv[1].shape == mask.shape
        assert out_inv[2].shape == bbox.shape
        assert out_inv[3].shape == keypoints.shape
Esempio n. 12
0
 def test_mixup(self, inp, random_apply, same_on_batch, device, dtype):
     inp = torch.as_tensor(inp, device=device, dtype=dtype)
     aug = K.AugmentationSequential(
         K.ImageSequential(K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
                           K.RandomAffine(360, p=1.0)),
         K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=1.0),
         K.RandomAffine(360, p=1.0),
         K.RandomMixUp(p=1.0),
         data_keys=["input"],
         random_apply=random_apply,
         same_on_batch=same_on_batch,
     )
     out = aug(inp)
     if aug.return_label:
         out, _ = out
     assert out.shape[-3:] == inp.shape[-3:]
     reproducibility_test(inp, aug)
Esempio n. 13
0
 def test_mixup(self, inp, return_transform, random_apply, same_on_batch,
                device, dtype):
     inp = torch.as_tensor(inp, device=device, dtype=dtype)
     aug = K.AugmentationSequential(
         K.ColorJitter(0.1, 0.1, 0.1, 0.1, p=1.0),
         K.RandomAffine(360, p=1.0),
         K.RandomMixUp(p=1.0),
         data_keys=["input"],
         random_apply=random_apply,
         return_transform=return_transform,
         same_on_batch=same_on_batch,
     )
     out = aug(inp)
     if aug.return_label:
         out, label = out
     if return_transform and isinstance(out, (tuple, list)):
         out = out[0]
     assert out.shape[-3:] == inp.shape[-3:]
     reproducibility_test(inp, aug)
Esempio n. 14
0
 def test_exception(self, augmentation_list, data_keys, device, dtype):
     with pytest.raises(Exception):  # AssertError and NotImplementedError
         K.AugmentationSequential(augmentation_list, data_keys=data_keys)
Esempio n. 15
0
    def test_random_crops(self, device, dtype):
        torch.manual_seed(233)
        input = torch.randn(3, 3, 3, 3, device=device, dtype=dtype)
        bbox = torch.tensor([[[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                              [0.0, 0.0, 2.0, 1.0]]],
                            device=device,
                            dtype=dtype).expand(3, -1, -1)
        points = torch.tensor([[[0.0, 0.0], [1.0, 1.0]]],
                              device=device,
                              dtype=dtype).expand(3, -1, -1)
        aug = K.AugmentationSequential(
            K.RandomCrop((3, 3), padding=1, cropping_mode='resample', fill=0),
            K.RandomAffine((360., 360.), p=1.),
            data_keys=["input", "mask", "bbox_xyxy", "keypoints"],
        )

        reproducibility_test((input, input, bbox, points), aug)

        _params = aug.forward_parameters(input.shape)
        # specifying the crops allows us to compute by hand the expected outputs
        _params[0].data['src'] = torch.tensor(
            [
                [[1.0, 2.0], [3.0, 2.0], [3.0, 4.0], [1.0, 4.0]],
                [[1.0, 1.0], [3.0, 1.0], [3.0, 3.0], [1.0, 3.0]],
                [[2.0, 0.0], [4.0, 0.0], [4.0, 2.0], [2.0, 2.0]],
            ],
            device=_params[0].data['src'].device,
            dtype=_params[0].data['src'].dtype,
        )

        expected_out_bbox = torch.tensor(
            [
                [[1.0, 0.0, 2.0, 1.0], [0.0, -1.0, 1.0, 1.0],
                 [0.0, -1.0, 2.0, 0.0]],
                [[1.0, 1.0, 2.0, 2.0], [0.0, 0.0, 1.0, 2.0],
                 [0.0, 0.0, 2.0, 1.0]],
                [[0.0, 2.0, 1.0, 3.0], [-1.0, 1.0, 0.0, 3.0],
                 [-1.0, 1.0, 1.0, 2.0]],
            ],
            device=device,
            dtype=dtype,
        )
        expected_out_points = torch.tensor(
            [[[0.0, -1.0], [1.0, 0.0]], [[0.0, 0.0], [1.0, 1.0]],
             [[-1.0, 1.0], [0.0, 2.0]]],
            device=device,
            dtype=dtype)

        out = aug(input, input, bbox, points, params=_params)
        assert out[0].shape == (3, 3, 3, 3)
        assert_close(out[0], out[1], atol=1e-4, rtol=1e-4)
        assert out[2].shape == bbox.shape
        assert_close(out[2], expected_out_bbox, atol=1e-4, rtol=1e-4)
        assert out[3].shape == points.shape
        assert_close(out[3], expected_out_points, atol=1e-4, rtol=1e-4)

        out_inv = aug.inverse(*out)
        assert out_inv[0].shape == input.shape
        assert_close(out_inv[0], out_inv[1], atol=1e-4, rtol=1e-4)
        assert out_inv[2].shape == bbox.shape
        assert_close(out_inv[2], bbox, atol=1e-4, rtol=1e-4)
        assert out_inv[3].shape == points.shape
        assert_close(out_inv[3], points, atol=1e-4, rtol=1e-4)