def apply_adjust_contrast(input: torch.Tensor, params: Dict[str, torch.Tensor], return_transform: bool = False): """Wrapper for adjust_contrast for Torchvision-like param settings. Args: input (torch.Tensor): Image to be adjusted in the shape of (*, N). params['contrast_factor'] (Union[float, torch.Tensor]): Contrast adjust factor per element in the batch. 0 generates a compleatly black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype( input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_contrast(input, params['contrast_factor'].to(input.dtype)) if return_transform: identity: torch.Tensor = torch.eye(3, device=input.device, dtype=input.dtype).repeat( input.shape[0], 1, 1) return transformed, identity return transformed
def apply_adjust_contrast(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: """Wrapper for adjust_contrast for Torchvision-like param settings. Args: input (torch.Tensor): Image to be adjusted in the shape of (*, N). params (Dict[str, torch.Tensor]): - params['contrast_factor']: Contrast adjust factor per element in the batch. 0 generates a compleatly black image, 1 does not modify the input image while any other non-negative number modify the brightness by this factor. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_contrast(input, params['contrast_factor'].to(input.dtype)) return transformed