Esempio n. 1
0
 def test_batch(self, batch_size, device, dtype):
     B: int = batch_size
     center = torch.rand(B, 3, device=device, dtype=dtype)
     angle = torch.rand(B, 3, device=device, dtype=dtype)
     scales: torch.Tensor = torch.ones_like(angle, device=device, dtype=dtype)
     P = proj.get_projective_transform(center, angle, scales)
     assert P.shape == (B, 3, 4)
Esempio n. 2
0
 def test_rot90z(self, device, dtype):
     center = torch.zeros(1, 3, device=device, dtype=dtype)
     angle = torch.tensor([[0.0, 0.0, 90.0]], device=device, dtype=dtype)
     scales: torch.Tensor = torch.ones_like(angle, device=device, dtype=dtype)
     P = proj.get_projective_transform(center, angle, scales)
     P_expected = torch.tensor(
         [[0.0, -1.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]], device=device, dtype=dtype
     ).unsqueeze(0)
     assert_close(P, P_expected, atol=1e-4, rtol=1e-4)
Esempio n. 3
0
    def test_rotate_y_large(self, device, dtype):
        """Rotates 90deg anti-clockwise."""
        input = torch.tensor(
            [
                [
                    [
                        [[0.0, 4.0, 0.0], [0.0, 3.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 2.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                    ],
                    [
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 9.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 6.0, 7.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 8.0, 0.0], [0.0, 0.0, 0.0]],
                    ],
                ]
            ],
            device=device,
            dtype=dtype,
        )

        expected = torch.tensor(
            [
                [
                    [
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                        [[4.0, 2.0, 0.0], [3.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                    ],
                    [
                        [[0.0, 0.0, 0.0], [0.0, 7.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 6.0, 8.0], [9.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                    ],
                ]
            ],
            device=device,
            dtype=dtype,
        )

        _, _, D, H, W = input.shape
        center = torch.tensor([[(W - 1) / 2, (H - 1) / 2, (D - 1) / 2]], device=device, dtype=dtype)

        angles = torch.tensor([[0.0, 90.0, 0.0]], device=device, dtype=dtype)

        scales: torch.Tensor = torch.ones_like(angles, device=device, dtype=dtype)
        P = proj.get_projective_transform(center, angles, scales)
        output = proj.warp_affine3d(input, P, (3, 3, 3))
        assert_close(output, expected, rtol=1e-4, atol=1e-4)
Esempio n. 4
0
    def test_rotate_y(self, device, dtype):
        input = torch.tensor(
            [
                [
                    [
                        [[0.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                    ]
                ]
            ],
            device=device,
            dtype=dtype,
        )

        expected = torch.tensor(
            [
                [
                    [
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [2.0, 1.0, 0.0], [0.0, 0.0, 0.0]],
                        [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
                    ]
                ]
            ],
            device=device,
            dtype=dtype,
        )

        _, _, D, H, W = input.shape
        center = torch.tensor([[(W - 1) / 2, (H - 1) / 2, (D - 1) / 2]], device=device, dtype=dtype)

        angles = torch.tensor([[0.0, 90.0, 0.0]], device=device, dtype=dtype)

        scales: torch.Tensor = torch.ones_like(angles, device=device, dtype=dtype)
        P = proj.get_projective_transform(center, angles, scales)
        output = proj.warp_affine3d(input, P, (3, 3, 3))
        assert_close(output, expected, rtol=1e-4, atol=1e-4)
Esempio n. 5
0
 def test_smoke(self, device, dtype):
     center = torch.rand(1, 3, device=device, dtype=dtype)
     angle = torch.rand(1, 3, device=device, dtype=dtype)
     scales: torch.Tensor = torch.ones_like(angle, device=device, dtype=dtype)
     P = proj.get_projective_transform(center, angle, scales)
     assert P.shape == (1, 3, 4)