Esempio n. 1
0
def getFlow_Coarse(pairID, flowList, finePath, coarsePath) :
    find = False 
    for flowName in flowList : 
        if flowName.split('_')[1] == str(pairID) : 
            nbH = flowName.split('_')[2].split('H')[0]
            find = True
            break
            
    if not find : 
        return [], []
    
    flow = torch.from_numpy ( np.load(os.path.join(finePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
    param = torch.from_numpy ( np.load(os.path.join(coarsePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
    
    
    h, w = flow.size()[2], flow.size()[3]
    
    #### -- grid     
    gridY = torch.linspace(-1, 1, steps = h * 8).view(1, -1, 1, 1).expand(1, h * 8,  w * 8, 1)
    gridX = torch.linspace(-1, 1, steps = w * 8).view(1, 1, -1, 1).expand(1, h * 8,  w * 8, 1)
    grid = torch.cat((gridX, gridY), dim=3)
    
    warper = tgm.HomographyWarper(h * 8,  w * 8)
    
    coarse = warper.warp_grid(param.narrow(0, 0, 1))
    
    return coarse, torch.ones(1, h * 8,  w * 8, 1)
Esempio n. 2
0
def getFlow(pairID, finePath, flowList, coarsePath, maskPath, multiH, th) :
    find = False 
    for flowName in flowList : 
        if flowName.split('_')[1] == str(pairID) : 
            nbH = flowName.split('_')[2].split('H')[0]
            find = True
            break
            
    if not find : 
        return [], []
    
    flow = torch.from_numpy ( np.load(os.path.join(finePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
    param = torch.from_numpy ( np.load(os.path.join(coarsePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) )
    match = np.load(os.path.join(finePath, 'mask_{:d}_{}H.npy'.format(pairID, nbH)))
    matchBG = np.load(os.path.join(maskPath, 'maskBG_{:d}_{}H.npy'.format(pairID, nbH)))
    
    
    h, w = flow.size()[2], flow.size()[3]
    
    #### -- grid     
    gridY = torch.linspace(-1, 1, steps = h * 8).view(1, -1, 1, 1).expand(1, h * 8,  w * 8, 1)
    gridX = torch.linspace(-1, 1, steps = w * 8).view(1, 1, -1, 1).expand(1, h * 8,  w * 8, 1)
    grid = torch.cat((gridX, gridY), dim=3)
    
    warper = tgm.HomographyWarper(h * 8,  w * 8)
    
    coarse = warper.warp_grid(param)
    
    flow = F.interpolate(input = flow, scale_factor = 8, mode='bilinear')
    flow = flow.permute(0, 2, 3, 1)
    flowUp = torch.clamp(flow + grid, min=-1, max=1)
    
    
    flow = F.grid_sample(coarse.permute(0, 3, 1, 2), flowUp).permute(0, 2, 3, 1).contiguous()
    
    match = torch.from_numpy(match)
    match = F.interpolate(input = match, scale_factor = 8, mode='bilinear')
    
    match = match.narrow(1, 0, 1) * F.grid_sample(match.narrow(1, 1, 1), flowUp) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2) 
    #match = match.narrow(1, 0, 1) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2)
    
    
    match = match.permute(0, 2, 3, 1)
    flow = torch.clamp(flow, min=-1, max=1)  
    flowGlobal = flow[:1]
    match_binary = match[:1] >= th
    matchGlobal = match[:1]
    if multiH : 
        
        for i in range(1, len(match)) : 
            tmp_match = (match.narrow(0, i, 1) >= th) * (~ match_binary)
            matchGlobal[tmp_match] = match.narrow(0, i, 1)[tmp_match]
            match_binary = match_binary + tmp_match 
            tmp_match = tmp_match.expand_as(flowGlobal)
            flowGlobal[tmp_match] = flow.narrow(0, i, 1)[tmp_match]
            
        
    
    return flowGlobal, matchGlobal
Esempio n. 3
0
def get_info(I):
    w, h = I.size
    gridY = torch.linspace(-1, 1, steps=h).view(1, -1, 1, 1).expand(1, h, w, 1)
    gridX = torch.linspace(-1, 1, steps=w).view(1, 1, -1, 1).expand(1, h, w, 1)
    grid = torch.cat((gridX, gridY), dim=3).cuda()
    tensor = transforms.ToTensor()(I).unsqueeze(0).cuda()
    warper = tgm.HomographyWarper(h, w)
    return w, h, tensor, grid, warper
Esempio n. 4
0
def _getFlow(flow, param, match, matchBG, multiH, th):
    h, w = flow.size()[2], flow.size()[3]

    #### -- grid
    gridY = torch.linspace(-1, 1,
                           steps=h * 8).view(1, -1, 1,
                                             1).expand(1, h * 8, w * 8, 1)
    gridX = torch.linspace(-1, 1,
                           steps=w * 8).view(1, 1, -1,
                                             1).expand(1, h * 8, w * 8, 1)
    grid = torch.cat((gridX, gridY), dim=3)

    warper = tgm.HomographyWarper(h * 8, w * 8)

    coarse = warper.warp_grid(param)

    flow = F.interpolate(input=flow, scale_factor=8, mode='bilinear')
    flow = flow.permute(0, 2, 3, 1)
    flowUp = torch.clamp(flow + grid, min=-1, max=1)

    flow = F.grid_sample(coarse.permute(0, 3, 1, 2),
                         flowUp).permute(0, 2, 3, 1).contiguous()

    match = F.interpolate(input=match, scale_factor=8, mode='bilinear')

    match = match.narrow(1, 0, 1) * F.grid_sample(match.narrow(
        1, 1, 1), flowUp) * (
            ((flow.narrow(3, 0, 1) >= -1) *
             (flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) *
            ((flow.narrow(3, 1, 1) >= -1) *
             (flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(
                 0, 3, 1, 2)
    #match = match.narrow(1, 0, 1) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2)

    match = match.permute(0, 2, 3, 1)
    flow = torch.clamp(flow, min=-1, max=1)
    flowGlobal = flow[:1]
    match_binary = match[:1] >= th
    if multiH:

        for i in range(1, len(match)):
            tmp_match = (match.narrow(0, i, 1) >= th) * (~match_binary)
            match_binary = match_binary + tmp_match
            tmp_match = tmp_match.expand_as(flowGlobal)
            flowGlobal[tmp_match] = flow.narrow(0, i, 1)[tmp_match]

    flowGlobal, match_binary = flowGlobal.squeeze().numpy(
    ), match_binary.squeeze().numpy() * matchBG

    return flowGlobal, match_binary
Esempio n. 5
0
def calculate_epe_hpatches(net,
                           val_loader,
                           device,
                           k,
                           inPklCoarse,
                           onlyCoarse,
                           transformation,
                           Transform,
                           coarsePlus=None,
                           iterativeRefine=False,
                           img_size=240):
    """
    Compute EPE for HPatches dataset
    Args:
        net: trained model
        val_loader: input dataloader
        device: `cpu` or `gpu`
        img_size: size of input images
    Output:
        aepe_array: averaged EPE for the whole sequence of HPatches
    """
    aepe_array = []
    n_registered_pxs = 0

    pbar = tqdm(enumerate(val_loader), total=len(val_loader))
    for i, mini_batch in pbar:

        source_img = mini_batch['source_image'].to(device)
        target_img = mini_batch['target_image'].to(device)
        bs, _, _, _ = source_img.shape

        ####
        # net prediction
        gridY = torch.linspace(-1, 1, steps=target_img.size(2)).view(
            1, -1, 1, 1).expand(1, target_img.size(2), target_img.size(3), 1)
        gridX = torch.linspace(-1, 1, steps=target_img.size(3)).view(
            1, 1, -1, 1).expand(1, target_img.size(2), target_img.size(3), 1)
        gridFine = torch.cat((gridX, gridY), dim=3).cuda()

        bestParam = inPklCoarse[i]
        if transformation == 'Affine':
            grid = F.affine_grid(
                torch.from_numpy(
                    bestParam[:2].astype(np.float32)).unsqueeze(0).cuda(),
                target_img.size())  # theta should be of size N×2×3
        else:
            bestParam = bestParam.astype(np.float32)
            warper = tgm.HomographyWarper(target_img.size()[2],
                                          target_img.size()[3])
            grid = warper.warp_grid(
                torch.from_numpy(bestParam).unsqueeze(0).cuda())

        IsSample = F.grid_sample(source_img, grid)

        sourceFeat = F.normalize(net['netFeatCoarse'](IsSample))
        targetFeat = F.normalize(net['netFeatCoarse'](target_img))

        corr12 = net['netCorr'](targetFeat, sourceFeat)
        match12 = model.predMatchability(corr12, net['netMatch'])

        corr21 = net['netCorr'](sourceFeat, targetFeat)
        match21 = model.predMatchability(corr21, net['netMatch'])

        _, flow_est = model.predFlowCoarse(corr12, net['netFlowCoarse'],
                                           gridFine)
        match_est = match12 * F.grid_sample(match21, flow_est)
        _, flow_est_inverse = model.predFlowCoarse(corr21,
                                                   net['netFlowCoarse'],
                                                   gridFine)

        flow_est = F.grid_sample(grid.permute(0, 3, 1, 2),
                                 flow_est).permute(0, 2, 3, 1).contiguous()
        flow_est = grid if onlyCoarse else flow_est

        if iterativeRefine:
            flow_est = iterative(net, gridFine, source_img, target_img,
                                 flow_est, i, match_est, Transform, coarsePlus,
                                 transformation)

        flow_target = mini_batch['correspondence_map'].to(device)

        mask_x_gt = \
            flow_target[:, :, :, 0].ge(-1) & flow_target[:, :, :, 0].le(1)
        mask_y_gt = \
            flow_target[:, :, :, 1].ge(-1) & flow_target[:, :, :, 1].le(1)
        mask_xx_gt = mask_x_gt & mask_y_gt
        mask_gt = torch.cat((mask_xx_gt.unsqueeze(3), mask_xx_gt.unsqueeze(3)),
                            dim=3)

        for i in range(bs):
            # unnormalize the flow: [-1; 1] -> [0; im_size - 1]
            flow_target[i] = (flow_target[i] + 1) * (img_size - 1) / (1 + 1)
            flow_est[i] = (flow_est[i] + 1) * (img_size - 1) / (1 + 1)

        flow_target_x = flow_target[:, :, :, 0]
        flow_target_y = flow_target[:, :, :, 1]
        flow_est_x = flow_est[:, :, :, 0]
        flow_est_y = flow_est[:, :, :, 1]

        flow_target = \
            torch.cat((flow_target_x[mask_gt[:, :, :, 0]].unsqueeze(1),
                       flow_target_y[mask_gt[:, :, :, 1]].unsqueeze(1)), dim=1)
        flow_est = \
            torch.cat((flow_est_x[mask_gt[:, :, :, 0]].unsqueeze(1),
                       flow_est_y[mask_gt[:, :, :, 1]].unsqueeze(1)), dim=1)

        # let's calculate EPE
        aepe = epe(flow_est, flow_target)
        aepe_array.append(aepe.item())
        n_registered_pxs += flow_target.shape[0]

    return aepe_array
Esempio n. 6
0
def iterative(net,
              gridFine,
              source_img,
              target_img,
              flow_est,
              i,
              match_est,
              Transform,
              coarsePlus,
              transformation,
              nbIter=1000,
              tolerance=0.03,
              nbPoint=4):

    if i not in coarsePlus:
        match_est = (match_est * (
            ((flow_est.narrow(3, 0, 1) >= -1) *
             (flow_est.narrow(3, 0, 1) <= 1)).type(torch.cuda.FloatTensor) *
            ((flow_est.narrow(3, 1, 1) >= -1) *
             (flow_est.narrow(3, 1, 1) <= 1)).type(torch.cuda.FloatTensor)
        ).permute(0, 3, 1, 2)).squeeze().cpu().numpy()
        match_est = (match_est > 0.5)

        ix, iy = np.where(match_est)
        gridArr = gridFine.squeeze().cpu().numpy()
        flow_estArr = flow_est.squeeze().cpu().numpy()
        match2 = np.concatenate((gridArr[ix, iy], np.ones((len(ix), 1))),
                                axis=1)
        match1 = np.concatenate((flow_estArr[ix, iy], np.ones((len(ix), 1))),
                                axis=1)
        if len(match1) > nbPoint:
            bestParam, bestInlier, match1Inlier, match2Inlier = outil.RANSAC(
                nbIter, match1, match2, tolerance, nbPoint, Transform)
        else:
            bestParam = np.eye(3)

        bestParam = bestParam.astype(np.float32)
        coarsePlus[i] = bestParam

    else:
        bestParam = coarsePlus[i]

    if transformation == 'Affine':
        grid = F.affine_grid(
            torch.from_numpy(
                bestParam[:2].astype(np.float32)).unsqueeze(0).cuda(),
            target_img.size())  # theta should be of size N×2×3
    else:
        bestParam = bestParam.astype(np.float32)
        warper = tgm.HomographyWarper(target_img.size()[2],
                                      target_img.size()[3])
        grid = warper.warp_grid(
            torch.from_numpy(bestParam).unsqueeze(0).cuda())

    IsSample = F.grid_sample(source_img, grid)

    sourceFeat = F.normalize(net['netFeatCoarse'](IsSample))
    targetFeat = F.normalize(net['netFeatCoarse'](target_img))

    corr12 = net['netCorr'](targetFeat, sourceFeat)

    _, flow_est = model.predFlowCoarse(corr12, net['netFlowCoarse'], gridFine)
    flow_est = F.grid_sample(grid.permute(0, 3, 1, 2),
                             flow_est).permute(0, 2, 3, 1).contiguous()
    return flow_est
Esempio n. 7
0
parser.add_argument('--onlyCoarse', action='store_true', help='only coarse?')

args = parser.parse_args()
print(args)

strideNet = 16

res = {}

gridY = torch.linspace(-1, 1, steps=args.minSize).view(1, -1, 1, 1).expand(
    1, args.minSize, args.minSize, 1)
gridX = torch.linspace(-1, 1, steps=args.minSize).view(1, 1, -1, 1).expand(
    1, args.minSize, args.minSize, 1)
grid = torch.cat((gridX, gridY), dim=3)
warper = tgm.HomographyWarper(args.minSize, args.minSize)

test_scene = os.listdir(args.finePth)

getFlow = getFlow_onlyCoarse if args.onlyCoarse else getFlow_all

for scene in test_scene:

    finePath = os.path.join(args.finePth, scene)
    coarsePath = os.path.join(args.coarsePth, scene)
    flowList = os.listdir(finePath)

    print('evaluating for scene {} ....'.format(scene))
    res[scene] = []

    csv_file = os.path.join(args.csv_path, 'hpatches_1_{}.csv'.format(scene))
Esempio n. 8
0
dict_pairid_nbH = dict(bg)
print (dict_pairid_nbH)

if args.noc : 
    args.gtPath =  '../../data/Kitti/training/flow_noc/'
else : 
    args.gtPath =  '../../data/Kitti/training/flow_occ/'
    
getFlow = getFlow_onlyCoarse if args.onlyCoarse else getFlow_all

for i in tqdm(range(nbImg)) :
    
    path = os.path.join(args.gtPath, '{0:06}_10.png'.format(i))
    u, v, valid = readFlow(path)
    Ith, Itw = u.shape[0], u.shape[1]
    warper_org = tgm.HomographyWarper(Ith,  Itw)
    
    #### -- org grid
    gridY = torch.linspace(-1, 1, steps = Ith).view(1, -1, 1, 1).expand(1, Ith,  Itw, 1)
    gridX = torch.linspace(-1, 1, steps = Itw).view(1, 1, -1, 1).expand(1, Ith,  Itw, 1)
    grid_org = torch.cat((gridX, gridY), dim=3)
    find = True
    if str(i) not in dict_pairid_nbH : 
        flow = grid_org
        find = False
    else : 
        nbH = dict_pairid_nbH[str(i)]
        flow = getFlow(str(i), args.predDir, nbH, args.resName, warper_org, args.multiH, grid_org, args.th, args.cc_th, args.interpolate)
    
    
    flow = flow - grid_org
Esempio n. 9
0
    It_bg_org = coarseModel.skyFromSeg(savepath / "tmp_It.jpg")
    It_bg = 1 - imresize(It_bg_org, (Ith, Itw)).astype(np.float32)  ## 0 is bg

if False:
    with torch.no_grad():
        featt = F.normalize(network['netFeatCoarse'](coarseModel.ItTensor))

        #### -- grid
        gridY = torch.linspace(-1, 1, steps=Ith,
                               device=device).view(1, -1, 1,
                                                   1).expand(1, Ith, Itw, 1)
        gridX = torch.linspace(-1, 1, steps=Itw,
                               device=device).view(1, 1, -1,
                                                   1).expand(1, Ith, Itw, 1)
        grid = torch.cat((gridX, gridY), dim=3)
        warper = tgm.HomographyWarper(Ith, Itw)

        ## update mask in every iteration
        Mask = np.zeros(
            (Ith, Itw), dtype=np.float32
        )  # 0 means new region need to be explored, 1 means masked regions

        Coarse_Flow_Tensor = []
        Coarse_Mask_Tensor = []

        CoarsePlus_Flow_Tensor = []
        CoarsePlus_Mask_Tensor = []

        Fine_Flow_Tensor = []
        Fine_Mask_Tensor = []
Esempio n. 10
0
def align_image(source_path, output_filename, destination_path, base_path):
    I1 = Image.open(source_path).convert('RGB')
    I2 = Image.open(destination_path).convert('RGB')

    ### 7 scales, setting ransac parameters

    nbScale = 7
    coarseIter = 10000
    coarsetolerance = 0.05
    minSize = 400
    imageNet = True  # we can also use MOCO feature here
    scaleR = 1.2

    coarseModel = CoarseAlign(nbScale, coarseIter, coarsetolerance,
                              'Homography', minSize, 1, True, imageNet, scaleR)

    coarseModel.setSource(I1)
    coarseModel.setTarget(I2)

    I2w, I2h = coarseModel.It.size
    featt = F.normalize(network['netFeatCoarse'](coarseModel.ItTensor))

    #### -- grid
    gridY = torch.linspace(-1, 1, steps=I2h).view(1, -1, 1,
                                                  1).expand(1, I2h, I2w, 1)
    gridX = torch.linspace(-1, 1, steps=I2w).view(1, 1, -1,
                                                  1).expand(1, I2h, I2w, 1)
    grid = torch.cat((gridX, gridY), dim=3).cuda()
    warper = tgm.HomographyWarper(I2h, I2w)

    bestPara, InlierMask = coarseModel.getCoarse(np.zeros((I2h, I2w)))
    bestPara = torch.from_numpy(bestPara).unsqueeze(0).cuda()

    ### Coarse Alignment

    flowCoarse = warper.warp_grid(bestPara)
    I1_coarse = F.grid_sample(coarseModel.IsTensor, flowCoarse)
    I1_coarse_pil = transforms.ToPILImage()(I1_coarse.cpu().squeeze())
    plt.figure(figsize=(20, 10))
    plt.subplot(1, 3, 1)
    plt.axis('off')
    plt.title('Source Image (Coarse)')
    plt.imshow(I1_coarse_pil)
    plt.subplot(1, 3, 2)
    plt.axis('off')
    plt.title('Target Image')
    plt.imshow(I2)
    plt.subplot(1, 3, 3)
    plt.title('Overlapped Image')
    plt.imshow(I2)
    plt.imshow(get_Avg_Image(I1_coarse_pil, coarseModel.It))
    plt.show()

    ### Fine Alignment

    featsSample = F.normalize(network['netFeatCoarse'](I1_coarse.cuda()))

    corr12 = network['netCorr'](featt, featsSample)
    flowDown8 = network['netFlowCoarse'](
        corr12, False)  ## output is with dimension B, 2, W, H

    flowUp = F.interpolate(flowDown8,
                           size=(grid.size()[1], grid.size()[2]),
                           mode='bilinear')
    flowUp = flowUp.permute(0, 2, 3, 1)

    flowUp = flowUp + grid

    flow12 = F.grid_sample(flowCoarse.permute(0, 3, 1, 2),
                           flowUp).permute(0, 2, 3, 1).contiguous()

    I1_fine = F.grid_sample(coarseModel.IsTensor, flow12)
    I1_fine_pil = transforms.ToPILImage()(I1_fine.cpu().squeeze())
    if not os.path.exists(os.path.join(base_path, "output")):
        os.mkdir(os.path.join(base_path, "output"))
    I1_fine_pil.save(os.path.join(base_path, "output", output_filename))
    plt.figure(figsize=(20, 10))

    plt.subplot(1, 3, 1)
    plt.axis('off')
    plt.title('Source Image (Fine Alignment)')
    plt.imshow(I1_fine_pil)
    plt.subplot(1, 3, 2)
    plt.axis('off')
    plt.title('Target Image')
    plt.imshow(I2)
    plt.subplot(1, 3, 3)
    plt.axis('off')
    plt.title('Overlapped Image')
    plt.imshow(get_Avg_Image(I1_fine_pil, coarseModel.It))
    plt.show()