def estimate_ratio_hypoxic(oxy_grp,threshold):
  dataman = myutils.DataManager(2, [DataDetailedPO2(), DataBasicVessel()])

  gvessels, gtumor = OpenVesselAndTumorGroups(oxy_grp)

  po2vessels, po2field_ld, po2field, parameters = dataman('detailedPO2', oxy_grp)
  po2vessels = np.average(po2vessels, axis=0)
  print 'po2vessels:', po2vessels.min(), po2vessels.max()
  print 'po2field:', np.amin(po2field), np.amax(po2field)
  #tissueOxygen = np.asarray(oxy_grp['po2field'])
  #print(tissueOxygen)
  
  #I neglect 5 entries from the boarder
  oxy_np_field= np.asarray(po2field)
  border=15
  cropped_oxy = oxy_np_field[border:-border,border:-border,border:-border]
  hypoxic_Tissue = cropped_oxy<threshold
  hypoxic_counts = np.sum(hypoxic_Tissue[:])  
  number_of_boxes = cropped_oxy.shape[0]*cropped_oxy.shape[1]*cropped_oxy.shape[2]
  #times volume of each box
  cropped_volume = number_of_boxes*np.power(po2field_ld.scale,3)
  print('considerd volume of: %f mum^3' % cropped_volume)
  print('considerd volume of: %f mm^3' % (cropped_volume/1e9))
  hypoxic_fraction = float(hypoxic_counts)/float(number_of_boxes)
  print('hypoxic fraction: %s ' % hypoxic_fraction)
  hypoxic_volume = hypoxic_counts*np.power(po2field_ld.scale,3)
  #to mm
  hypoxic_volume = hypoxic_volume/1e9
  return hypoxic_fraction,hypoxic_volume
def ProduceData(fitParameters, filename):
    from krebs.analyzeGeneral import DataBasicVessel, DataVesselSamples, DataVesselGlobal
    from krebs.detailedo2Analysis import DataDetailedPO2
    import krebs.detailedo2Analysis.singleVesselCases as singleVesselCases

    paramspo2Override = dict(
        massTransferCoefficientModelNumber=1,
        conductivity_coeff1=fitParameters[0],
        conductivity_coeff2=fitParameters[1],
        conductivity_coeff3=fitParameters[2],
    )

    f = h5files.open(filename, 'a')

    krebsutils.set_num_threads(2)
    dataman = myutils.DataManager(20, [
        DataDetailedPO2(),
        DataBasicVessel(),
        DataVesselSamples(),
        DataVesselGlobal()
    ])

    for k, params in fitCases:
        params = deepcopy(params)
        params.paramspo2.update(paramspo2Override)
        singleVesselCases.GenerateSingleCapillaryWPo2(dataman, f, k, 16,
                                                      params)
    return f
Esempio n. 3
0
def renderScene(drug_grp, imagefn, options): 
  imagefn, ext = splitext(imagefn)
  ext = '.' + options.format
  
  options.imageFileName = imagefn+'_iff_drug'+ext
  
  max_conc = getMaxConcentration(drug_grp.file)    
  dataman = myutils.DataManager(2, [DataBasicVessel()])
  
  timepoint = drug_grp.attrs['time'] #comes in seconds
  timepoint = timepoint/3600.
  #gvessels = drug_grp.parent['iff/vessels']
  gvessels = drug_grp.parent['vessels']
  iff_pressure_field = drug_grp.parent['iff/iff_pressure']
  drug_conc_field = drug_grp['conc']
  cell_drug_conc_field = drug_grp['conc_cell']
  ex_drug_conc_field = drug_grp['conc_ex']
  
  #ex_drug_auc_field = drug_grp.parent['measurements/drug_local_integral']['auc_ex']
  #in_drug_auc_field = drug_grp.parent['measurements/drug_local_integral']['auc_in']
  
  #iff_ld  = krebsutils.read_lattice_data_from_hdf_by_filename(drug_grp.parent['field_ld'])
  iff_ld  = krebsutils.read_lattice_data_from_hdf_by_filename(str(drug_grp.file.filename),str(drug_grp.parent.name)+'field_ld')
  
  #ld = iffgroup['lattice']

  #po2vessels, po2field_ld, po2field, parameters = dataman('detailedPO2', po2group)
  #po2vessels = np.average(po2vessels, axis=0)
  #print 'po2vessels:', po2vessels.min(), po2vessels.max()
  print 'ifpfield:', np.amin(iff_pressure_field), np.amax(iff_pressure_field)
  print 'drug_conc_field:', np.amin(drug_conc_field), np.amax(drug_conc_field)

  #vessel_ld = krebsutils.read_lattice_data_from_hdf(gvessels['lattice'])
  vessel_ld = krebsutils.read_lattice_data_from_hdf_by_filename(str(gvessels.file.filename),str(gvessels.name)+'/lattice')
  vessel_graph = dataman('vessel_graph', gvessels, ['position', 'flags', 'radius'])  
    
  #vessel_graph.edges['po2vessels'] = po2vessels
  #vessel_graph.edges['saturation'] = PO2ToSaturation(po2vessels, parameters)
  #vessel_graph.edges['hboconc'] = vessel_graph.edges['saturation']*vessel_graph.edges['hematocrit']*chb_of_rbcs*1.0e3
  vessel_graph = vessel_graph.get_filtered(edge_indices = myutils.bbitwise_and(vessel_graph['flags'], krebsutils.CIRCULATED))
  if options.filterradiuslowpass>0.0:
    print("lowpass filter activated:")
    vessel_graph = vessel_graph.get_filtered(edge_indices = vessel_graph['radius']< kwargs['filterradiuslowpass'])
  imagefn, ext = splitext(imagefn)
  ext = '.' + options.format
  
  if 1:
    if timepoint==0:
      renderSliceWithDistribution((vessel_ld, vessel_graph, 'iff_pressure'), (iff_ld, iff_pressure_field), (imagefn+'_iff_pressure_t%0.1fh'%timepoint )+ext, 'IF pressure t=%.1f h'%timepoint, options, max_conc=max_conc)
    renderSliceWithDistribution((vessel_ld, vessel_graph, 'drug_conc'), (iff_ld, drug_conc_field), (imagefn+'_iff_drug_t%0.1fh'%timepoint )+ext, '%s t=%.1f h'%(drug_grp.file.attrs.get('MESSAGE'),timepoint), options, max_conc=max_conc)
    #renderSliceWithDistribution((vessel_ld, vessel_graph, 'drug_conc'), (iff_ld, cell_drug_conc_field), (imagefn+'_iff_drug_incell_t%0.1fh'%timepoint)+ext, 'Tr. intr. t=%.1f h'%timepoint, kwargs)
    #renderSliceWithDistribution((vessel_ld, vessel_graph, 'drug_conc'), (iff_ld, ex_drug_conc_field), (imagefn+'_iff_drug_excell_t%0.1fh'%timepoint)+ext, 'Tr. extr. t=%.1f h'%timepoint, kwargs)
    if options.plot_auc:
      renderSliceWithDistribution((vessel_ld, vessel_graph, 'auc'), (iff_ld, ex_drug_auc_field), imagefn+'_iff_ex_drug_auc'+ext, 'Tr. extr. t=%.1f h'%timepoint, options, max_conc=max_conc)
    #renderSliceWithDistribution((vessel_ld, vessel_graph, 'auc'), (iff_ld, in_drug_auc_field), imagefn+'_iff_in_drug_auc'+ext, 'Tr. intr. t=%.1f h'%timepoint, kwargs)
  if 0:
    renderSlice((vessel_ld, vessel_graph, 'radius'), (iff_ld, iff_pressure_field), imagefn+'_iff_pressure'+ext, '', options)
    renderSlice((vessel_ld, vessel_graph, 'radius'), (iff_ld, drug_conc_field), imagefn+'_iff_drug'+ext, '', options)
    renderSlice((vessel_ld, vessel_graph, 'radius'), (iff_ld, cell_drug_conc_field), imagefn+'_iff_drug_incell'+ext, '', options)
    renderSlice((vessel_ld, vessel_graph, 'radius'), (iff_ld, ex_drug_conc_field), imagefn+'_iff_drug_excell'+ext, '', options)
def estimate_annoxic_hypoxic_normoxic(oxy_grp, tumorradius,threshold1,threshold2):
  dataman = myutils.DataManager(2, [DataDetailedPO2(), DataBasicVessel()])

  gvessels, gtumor = OpenVesselAndTumorGroups(oxy_grp)

  po2vessels, po2field_ld, po2field, parameters = dataman('detailedPO2', oxy_grp)
  po2vessels = np.average(po2vessels, axis=0)
  print 'po2vessels:', po2vessels.min(), po2vessels.max()
  print 'po2field:', np.amin(po2field), np.amax(po2field)
  #tissueOxygen = np.asarray(oxy_grp['po2field'])
  #print(tissueOxygen)
  
  #I neglect 5 entries from the boarder
  oxy_np_field= np.asarray(po2field)
  #find minimal dimension
  min_dim = np.min(oxy_np_field.shape)
  print("tumorradius: %f, ld: %f" %(tumorradius,po2field_ld.scale))
  border0=int(np.floor(oxy_np_field.shape[0]/2)-np.ceil(tumorradius/po2field_ld.scale))
  border1=int(np.floor(oxy_np_field.shape[1]/2)-np.ceil(tumorradius/po2field_ld.scale))
  border2=int(np.floor(oxy_np_field.shape[2]/2)-np.ceil(tumorradius/po2field_ld.scale))
  
  print("border0: %i" %border0)
  print("border1: %i" %border1)
  print("border2: %i" %border2)
  cropped_oxy = oxy_np_field[border0:-border0,border1:-border1,border2:-border2]
  annoxic_Tissue = cropped_oxy<threshold1
  annoxic_counts = np.sum(annoxic_Tissue[:])
  hypoxic_Tissue = np.logical_and(cropped_oxy<threshold2, cropped_oxy>threshold1)
  #hypoxic_Tissue = hypoxic_Tissue>threshold1
  hypoxic_counts = np.sum(hypoxic_Tissue[:])
  normoxic_Tissue = cropped_oxy>threshold2
  normoxic_counts = np.sum(normoxic_Tissue[:])
  number_of_boxes = cropped_oxy.shape[0]*cropped_oxy.shape[1]*cropped_oxy.shape[2]
  ''' volume correction for not sampling a sphere, but a cube
  \frac{volume(sphere)}{volume(cube of 2 times radius)} = \pi/6
  '''
  volume_correction_factor = np.pi/6.
  #volume_correction_factor = 1.
  #times volume of each box
  cropped_volume = number_of_boxes*np.power(po2field_ld.scale,3)
  print('considerd volume of: %f mum^3' % cropped_volume)
  print('considerd volume of: %f mm^3' % (cropped_volume/1e9))
  hypoxic_fraction = float(hypoxic_counts)/float(number_of_boxes)
  print('hypoxic fraction: %s ' % hypoxic_fraction)
  annoxic_volume = annoxic_counts*np.power(po2field_ld.scale,3) * volume_correction_factor
  #to mm
  annoxic_volume = annoxic_volume/1e9
  normoxic_volume = normoxic_counts*np.power(po2field_ld.scale,3) * volume_correction_factor
  #to mm
  normoxic_volume = normoxic_volume/1e9
  hypoxic_volume = hypoxic_counts*np.power(po2field_ld.scale,3) * volume_correction_factor
  #to mm
  hypoxic_volume = hypoxic_volume/1e9
  #return hypoxic_fraction,hypoxic_volume
  return annoxic_volume,hypoxic_volume,normoxic_volume
Esempio n. 5
0
def AddAverageConductivity(vesselgroup, parameters):
  dataman = myutils.DataManager(100, [DataBasicVessel()])
  vessels = dataman.obtain_data('vessel_graph', vesselgroup, ['flow', 'pressure', 'flags', 'radius','nodeflags'])
  def DoBC():
      conductivities, avgVenousPressure, avgArterialPressure, totalFlow = ComputeVascularTreeBloodFlowResistances(vessels)
      avgConductivity = (totalFlow/(avgArterialPressure-avgVenousPressure))
      print 'avgVenousPressure', avgVenousPressure
      print 'avgArterialPressure', avgArterialPressure
      print 'totalFlow', totalFlow
      print 'avgConductivity', avgConductivity
      return avgConductivity
  avgConductivity = DoBC()
  parameters['adaption']['avgRootNodeConductivity'] = avgConductivity
  return parameters
Esempio n. 6
0
def renderScene(po2group, imagefn, options):
    dataman = myutils.DataManager(2, [DataDetailedPO2(), DataBasicVessel()])

    gvessels, gtumor = OpenVesselAndTumorGroups(po2group)

    po2vessels, po2field_ld, po2field, parameters = dataman(
        'detailedPO2', po2group)
    po2vessels = np.average(po2vessels, axis=0)
    print 'po2vessels:', po2vessels.min(), po2vessels.max()
    print 'po2field:', np.amin(po2field), np.amax(po2field)

    #vessel_ld = krebsutils.read_lattice_data_from_hdf(gvessels['lattice'])
    vessel_graph = dataman('vessel_graph', gvessels,
                           ['position', 'flags', 'radius', 'hematocrit'])

    vessel_graph.edges['po2_vessels'] = po2vessels
    print(parameters)
    vessel_graph.edges['saturation'] = PO2ToSaturation(po2vessels, parameters)
    vessel_graph.edges['hboconc'] = vessel_graph.edges[
        'saturation'] * vessel_graph.edges['hematocrit'] * chb_of_rbcs * 1.0e3
    vessel_graph = vessel_graph.get_filtered(edge_indices=myutils.bbitwise_and(
        vessel_graph['flags'], krebsutils.CIRCULATED))
    if options.filterradiuslowpass > 0:
        print("lowpass filter activated:")
        vessel_graph = vessel_graph.get_filtered(
            edge_indices=vessel_graph['radius'] < options.filterradiuslowpass)

    imagefn, ext = splitext(imagefn)
    ext = '.' + options.format
    #renderSliceWithDistribution((vessel_ld, vessel_graph, 'po2vessels'), (po2field_ld, po2field), imagefn+'_po2vessels'+ext, '', options)
    #renderSlice((vessel_ld, vessel_graph, 'saturation'), (None, None), imagefn+'_saturation'+ext, '', options)
    #renderSlice((vessel_ld, vessel_graph, 'hboconc'), (None, None), imagefn+'_hboconc'+ext, 'HbO [mmol/l blood]', options)

    #try world
    options.imageFileName = imagefn + '_po2vessels' + ext
    renderSliceWithDistribution((po2field_ld, vessel_graph, 'po2_vessels'),
                                (po2field_ld, po2field), '', options)
    options.imageFileName = imagefn + '_saturation' + ext
    renderSlice((po2field_ld, vessel_graph, 'saturation'), (None, None), '',
                options)
    options.imageFileName = imagefn + '_hboconc' + ext
    renderSlice((po2field_ld, vessel_graph, 'hboconc'), (None, None),
                'HbO [mmol/l blood]', options)
Esempio n. 7
0
    plotAnalyzeConvergence(dataman, pdfwriter, plotties)

    plotties[0].AddStatsPage(pdfwriter)

    plotAnalyzeIterativeConvergence(dataman, pdfwriter, plotties)
    
  pyplot.close('all')





if __name__ == '__main__':
  krebsutils.set_num_threads(2)
  dataman = myutils.DataManager(20, [DataDetailedPO2(),DataBasicVessel(), DataVesselSamples(), DataVesselGlobal()])

  fn = 'vessel-single-all.h5'
  #os.unlink(fn)
  f = h5files.open(fn,'a')
  
  GenerateSingleCapillaryWPo2(dataman, f, 'nair_uptake', 14, singleVesselParameterSets.nair_uptake)
  plot_single_capillary(dataman, f['nair_uptake'], useInsets = True)

  GenerateSingleCapillaryWPo2(dataman, f, 'nair_release', 14, singleVesselParameterSets.nair_release)
  plot_single_capillary(dataman, f['nair_release'], useInsets = True)

  grouplist = []
  for name in [ 'moschandreou_case%02i' % i for i in xrange(6) ]:
    params = getattr(singleVesselParameterSets, name)
    r = params.paramsTube['r']
Esempio n. 8
0
        pdfwriter.savefig(fig, postfix='_curves')

        plotAnalyzeConvergence(dataman, pdfwriter, plotties)

        plotties[0].AddStatsPage(pdfwriter)

        plotAnalyzeIterativeConvergence(dataman, pdfwriter, plotties)

    pyplot.close('all')


if __name__ == '__main__':
    krebsutils.set_num_threads(2)
    dataman = myutils.DataManager(20, [
        DataDetailedPO2(),
        DataBasicVessel(),
        DataVesselSamples(),
        DataVesselGlobal()
    ])

    fn = 'vessel-single-all.h5'
    #os.unlink(fn)
    f = h5files.open(fn, 'a')

    GenerateSingleCapillaryWPo2(dataman, f, 'nair_uptake', 14,
                                singleVesselParameterSets.nair_uptake)
    plot_single_capillary(dataman, f['nair_uptake'], useInsets=True)

    GenerateSingleCapillaryWPo2(dataman, f, 'nair_release', 14,
                                singleVesselParameterSets.nair_release)
    plot_single_capillary(dataman, f['nair_release'], useInsets=True)
def doit(filenames, pattern):
    dataman = myutils.DataManager(20, [
        DataTumorTissueSingle(),
        DataDistanceFromCenter(),
        DataBasicVessel(),
        DataVesselSamples(),
        DataVesselRadial(),
        DataVesselGlobal(),
        DataTumorBloodFlow()
    ])

    ensemble = EnsembleFiles(dataman, filenames, pattern)
    if ensemble.has_tumor:
        print 'paths: ', map(lambda (_t0, path, _t1): path,
                             ensemble.tumor_snapshots)
    else:
        print 'paths: ', set(map(lambda e: e.path, ensemble.items))

    prefix, suffix = myutils.splitcommonpresuffix(
        map(lambda s: basename(s), filenames))
    outputbasename, _ = splitext(prefix + suffix)
    fn_measure = outputbasename + '-radial-cache.h5'
    f_measure = h5files.open(fn_measure, 'a')

    def cachelocation(g):
        path = posixpath.join(
            'FileCS_' + myutils.checksum(basename(g.file.filename)),
            g.name.strip(posixpath.sep))
        return (f_measure, path)

    #name = ensemble.items[0].path.split('/')[-1]
    measurementinfo = dict(sample_length=30.,
                           cachelocation_callback=cachelocation,
                           distancemap_spec='radial')

    print 'getting radial curves'
    stuff = []
    stuff2 = []
    for items, path, time in ensemble.tumor_snapshots:
        bins_spec, curves = CollectAllRadialData(dataman, items,
                                                 measurementinfo)
        tumorradius = GetAverageApproximateTumorRadius(dataman, ensemble,
                                                       items)
        stuff.append((time, tumorradius, curves))
        stuff2.append((time, tumorradius, curves, path))

    #output_filename+= '_'+name
    with mpl_utils.PdfWriter(outputbasename + '-radial.pdf') as pdfwriter:
        PlotRadialCurves(pdfwriter, bins_spec, stuff, measurementinfo,
                         ensemble.world_size)

    with h5py.File(outputbasename + '-radial.h5', 'w') as f:
        f.attrs['COMMONPREFIX'] = os.path.commonprefix(
            map(lambda s: basename(s), filenames))
        f.create_dataset('files', data=filenames)
        f.create_dataset('groups',
                         data=np.asarray(set(
                             map(lambda item: item.path, ensemble.items)),
                                         dtype=np.str))
        for i, (time, tumorradius, curves, path) in enumerate(stuff2):
            g = f.create_group(path.strip('/').replace('/', '-'))
            g.attrs['TUMORRADIUS'] = tumorradius
            g.attrs['TIME'] = time
            for name, curve in curves.iteritems():
                curve = myutils.MeanValueArray.fromSummation(
                    map(lambda x: x.avg, curve))
                g.create_dataset(name + '/avg', data=np.asarray(curve.avg))
                g.create_dataset(name + '/std', data=np.asarray(curve.std))
                g.create_dataset(name + '/mask', data=~curve.avg.mask)
                g.create_dataset(name + '/std_mean',
                                 data=np.asarray(curve.std_mean))
            g.create_dataset('bins', data=bins_spec.arange())