Esempio n. 1
0
 def load_latest_checkpoint(checkpoint, directory, device):
     ckpts = get_files(directory, "*.ckpt")
     if ckpts:
         last_ckpt = ckpts[-1]
         checkpoint.restore(last_ckpt, device)
     else:
         raise ValueError("No checkpoints found in {}.".format(directory))
Esempio n. 2
0
    def _trim_checkpoints(self):
        """Trim older checkpoints until `max_to_keep` remain.
        """
        # get a list of checkpoints in reverse
        # chronological order
        ckpts = get_files(self.directory, "*.ckpt")[::-1]

        # remove until `max_to_keep` remain
        num_remove = len(ckpts) - self.max_to_keep
        while num_remove > 0:
            ckpt_name = ckpts.pop()
            os.remove(ckpt_name)
            num_remove -= 1
Esempio n. 3
0
def get_embs(embs_path, embodiment_names, num_traj):
    emb_files = file_utils.get_files(osp.join(embs_path, "embs"),
                                     "*.npy",
                                     sort=False)
    embs, frames, pos_neg_labels = {}, {}, {}
    for i, emb_file in enumerate(emb_files):
        emb_name = osp.basename(emb_file).split(".")[0]
        if emb_name not in embodiment_names:
            continue
        with open(emb_file, "rb") as f:
            data = np.load(f, allow_pickle=True).item()
        embs[emb_name] = data["embs"][:num_traj]
        frames[emb_name] = data["frames"][:num_traj]
        pos_neg_labels[emb_name] = data["labels"][:num_traj]
    return embs, frames, pos_neg_labels
Esempio n. 4
0
    def restore_or_initialize(self):
        """Restore items in checkpoint from the latest checkpoint file.

        Returns:
            The global iteration step. This is parsed from the latest
            checkpoint file if one is found, else 0 is returned.
        """
        ckpts = get_files(self.directory, "*.ckpt")
        if ckpts:
            last_ckpt = ckpts[-1]
            status = self.checkpoint.restore(last_ckpt, self.device)
            if not status:
                logging.info("Could not restore latest checkpoint file.")
                return 0
            self.latest_checkpoint = last_ckpt
            return int(osp.basename(last_ckpt).split(".")[0])
        return 0
Esempio n. 5
0
def main(args):
    plt.switch_backend("Agg")

    emb_files = file_utils.get_files(osp.join(args.embs_path, "embs"),
                                     "*.npy",
                                     sort=False)
    print("Found files: {}".format(emb_files))

    for i, emb_file in enumerate(emb_files):
        embs, frames = [], []
        with open(emb_file, "rb") as f:
            query_dict = np.load(f, allow_pickle=True).item()
        for j in range(len(query_dict["embs"])):
            curr_embs = query_dict["embs"][j]
            if args.l2_normalize:
                curr_embs = [x / (np.linalg.norm(x) + 1e-7) for x in curr_embs]
            embs.append(curr_embs)
            frames.append(query_dict["frames"][j])

        # generate video name
        video_path = osp.join(args.embs_path, "videos")
        file_utils.mkdir(video_path)
        ext = ".mp4" if args.align else "_original.mp4"
        video_path = osp.join(video_path,
                              osp.basename(emb_file).split(".")[0] + ext)

        if not args.align:
            print("Playing videos without alignment.")
            create_original_videos(frames, video_path, args.interval)
        else:
            print("Aligning videos.")
            create_video(
                embs,
                frames,
                video_path,
                args.use_dtw,
                query=args.reference_video,
                candidate=args.candidate_video,
                interval=args.interval,
            )
Esempio n. 6
0
def videos_to_images(in_dir, out_dir, num_cores):
    set_start_method("spawn")
    with Pool(num_cores) as pool:
        action_dirs = file_utils.get_subdirs(in_dir)
        for action_dir in action_dirs:
            print("Processing ", osp.basename(action_dir))
            out_action = osp.join(out_dir, osp.basename(action_dir))
            file_utils.mkdir(out_action)
            videos = file_utils.get_subdirs(action_dir)
            for video in videos:
                out_action_video = osp.join(out_action, osp.basename(video))
                file_utils.mkdir(out_action_video)
                files = file_utils.get_files(video, "*.mp4", False)
                func_args = [[f, out_action_video, video] for f in files]
                for _ in tqdm(
                    pool.imap_unordered(process_video, func_args),
                    total=len(files),
                ):
                    pass
                file_utils.copy_file(
                    osp.join(video, "joint_angles.txt"),
                    osp.join(out_action_video, "joint_angles.txt"),
                )
Esempio n. 7
0
 def _load_frames(self, vid_dirs):
     assert (
         len(vid_dirs) > 1
     ), f"{self.__class__.__name__} can only operate on multiple videos at a time."
     return [get_files(vd, self._pattern) for vd in vid_dirs]
Esempio n. 8
0
 def _load_frames(self, vid_dirs):
     assert (
         len(vid_dirs) == 1
     ), f"{self.__class__.__name__} can only operate on a single video at a time."
     return get_files(vid_dirs[0], self._pattern)
Esempio n. 9
0
def main(args):
    emb_files = file_utils.get_files(
        osp.join(args.embs_path, "embs"), "*.npy", sort=False
    )
    print(f"Found {len(emb_files)} files.")

    embodiment_names = [
        "two_hands_two_fingers",
        "tongs",
        "rms",
        # "ski_gloves",
        # "quick_grip",
        "one_hand_two_fingers",
        "one_hand_five_fingers",
        "double_quick_grip",
        # "crab",
        # "quick_grasp",
    ]

    all_embs, all_names, phase_labels = [], [], []
    for i, emb_file in enumerate(emb_files):
        emb_name = osp.basename(emb_file).split(".")[0]
        if emb_name not in embodiment_names:
            continue
        embs = []
        with open(emb_file, "rb") as f:
            query_dict = np.load(f, allow_pickle=True).item()
        for j in range(len(query_dict["embs"])):
            if j == args.num_traj:
                break
            curr_embs = query_dict["embs"][j]
            if args.l2_normalize:
                curr_embs = [x / (np.linalg.norm(x) + 1e-7) for x in curr_embs]
            embs.append(curr_embs)
        all_embs.append(embs)
        all_names.append(emb_name)
        phase_labels.append(query_dict["phase_labels"])

    # split one_hand_five_fingers into 2
    h_idx = all_names.index("one_hand_five_fingers")
    h_emb = all_embs[h_idx]
    h_phase_labels = phase_labels[h_idx]
    all_names.pop(h_idx)
    all_embs.pop(h_idx)
    emb_one_hand_five_fivers_1 = []
    emb_one_hand_five_fivers_2 = []
    for emb, pl in zip(h_emb, h_phase_labels):
        if len(np.unique(pl)) == 2:
            emb_one_hand_five_fivers_1.append(emb)
        else:
            emb_one_hand_five_fivers_2.append(emb)
    all_names = all_names + [
        "one_hand_five_fingers_without_slide",
        "one_hand_five_fingers_with_slide",
    ]
    all_embs.append(emb_one_hand_five_fivers_1)
    all_embs.append(emb_one_hand_five_fivers_2)

    num_embs = len(all_embs)
    chamfers = np.zeros((num_embs, num_embs))
    for i in range(len(all_embs)):
        query_embs = all_embs[i]
        for j in range(len(all_embs)):
            if i == j:
                continue
            cand_embs = all_embs[j]
            query_chamfer = []
            for query_emb in query_embs:
                kd_tree_query = KDTree(query_emb)
                chamfer_dist = []
                for cand_emb in cand_embs:
                    chamfer_dist.append(
                        symmetric_chamfer(query_emb, cand_emb, kd_tree_query)
                    )
                query_chamfer.append(np.mean(chamfer_dist))
            chamfers[i, j] = np.mean(query_chamfer)

    # determine row-wise min
    mins = []
    for i in range(num_embs):
        mins.append(np.argsort(chamfers[i])[1])

    # plot heatmap
    fig, ax = plt.subplots(figsize=(15, 10))
    im = ax.imshow(chamfers, cmap="RdBu", interpolation="nearest")
    cbar = ax.figure.colorbar(im, ax=ax)
    cbar.ax.set_ylabel("Chamfer Distance", rotation=-90, va="bottom")
    ax.set_xticks(np.arange(num_embs))
    ax.set_yticks(np.arange(num_embs))
    ax.set_xticklabels(all_names)
    ax.set_yticklabels(all_names)
    ax.yaxis.set_tick_params(labelsize=7)
    ax.xaxis.set_tick_params(labelsize=7)
    plt.setp(
        ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor"
    )
    for i in range(num_embs):
        for j in range(num_embs):
            if i == j:
                continue
            txt = "{:.5f}".format(chamfers[i, j])
            if j == mins[i]:
                txt += "_min"
            _ = ax.text(
                j, i, txt, ha="center", va="center", color="black", fontsize=7
            )
    task_name = args.embs_path.split("/")[-2]
    ax.set_title(task_name)
    name = "{}_heatmap.png".format(task_name)
    plt.savefig(osp.join("tmp", name), format="png", dpi=300)
    plt.show()
Esempio n. 10
0
    if args.output_dir is not None:
        file_utils.mkdir(args.output_dir)
    else:
        args.output_dir = args.input_dir
    frame_dir = osp.join(args.input_dir, "frames")
    label_dir = osp.join(args.input_dir, "labels")

    if args.resize:
        args.resize = (args.height, args.width)
        logging.info("Resizing images to ({}, {}).".format(*args.resize))
    else:
        args.resize = None

    # read all label files and figure out which
    # videos belong to which class
    label_files = file_utils.get_files(label_dir, "*.mat")
    label_classes = [loadmat(lab)["action"][0] for lab in label_files]

    # figure out train test splits
    train_val_splits = [loadmat(lab)["train"][0][0] for lab in label_files]

    # now figure out at which indices the class
    # change occurs
    change_idxs = []
    for i in range(len(label_classes) - 1):
        c_curr = label_classes[i]
        c_next = label_classes[i + 1]
        if c_curr != c_next:
            change_idxs.append(i + 1)
    change_idxs = [0, *change_idxs, len(label_files)]
Esempio n. 11
0
def main(args):
    # get a list of embedding files
    # one for each action class
    emb_files = file_utils.get_files(osp.join(args.embs_path, "embs"),
                                     "*.npy",
                                     sort=False)
    print(f"Found {len(emb_files)} files.")

    all_embs, all_names = [], []
    for i, emb_file in enumerate(emb_files):
        embs = []
        with open(emb_file, "rb") as f:
            query_dict = np.load(f, allow_pickle=True).item()
        for j in range(len(query_dict["embs"])):
            curr_embs = query_dict["embs"][j]
            if args.l2_normalize:
                curr_embs = [x / (np.linalg.norm(x) + 1e-7) for x in curr_embs]
            embs.append(curr_embs)
        all_embs.append(embs)
        all_names.append(osp.basename(emb_file).split(".")[0])

    query_name = "rms"
    query_idx = all_names.index(query_name)
    query_embs = all_embs[query_idx]
    all_embs.pop(query_idx)
    all_names.pop(query_idx)

    # pick a random query trajectory
    emb_query = query_embs[2]  # np.random.choice(query_embs)
    kd_tree_query = KDTree(emb_query)

    # loop through all other embeddings
    # and find the closest trajectory
    # and its class
    # chamfer_dists = []
    class_min = -1
    traj_min = -1
    chamfer_dist = 100
    for i, emb_cands in enumerate(all_embs):
        for t, emb_cand in enumerate(emb_cands):
            dist = symmetric_chamfer(emb_query, emb_cand, kd_tree_query)
            if dist < chamfer_dist:
                class_min = i
                traj_min = t
                chamfer_dist = dist
    # chamfer_dists = np.array(chamfer_dists)
    # class_min = chamfer_dists.min(axis=1).argmin()
    # traj_min = chamfer_dists.argmin(axis=1)[class_min]
    print(all_names[class_min], traj_min)

    # artificially increase / decrease some trajectories
    # emb_best = all_embs[class_min][traj_min]
    emb_bad = all_embs[all_names.index("hand_5_fingers")][-9]
    # emb_best_mod = modify_emb(emb_best)
    # emb_bad_mod = modify_emb(emb_bad)

    # compute dense reward between query emb
    # and closest one as determined above
    # reward_best = dense_reward(emb_query, emb_best, True)
    reward_bad = dense_reward(emb_query, emb_bad, False)
    # reward_best_mod = dense_reward(emb_query, emb_best_mod)
    # reward_bad_mod = dense_reward(emb_query, emb_bad_mod)

    plt.figure()
    # plt.plot(reward_best, label='best')
    plt.plot(reward_bad, label="random")
    # plt.plot(reward_best_mod, label='best-updownsampled')
    # plt.plot(reward_bad_mod, label='random-updownsampled')
    plt.xlabel("Frame Index")
    plt.xlabel("Reward")
    plt.legend()
    plt.savefig("./reward_rms.png", format="png", dpi=300)
    plt.show()