def test_run_default(self): _cos = lambda l: l[2] * np.cos(l[0] * t + l[1]) theta = [ [15, 0, 1, 0], [35, 2, 3, 0], ] theta_std = [ [1.0, 0.1, 0.8, 0.01], [1.5, 0.1, 1.5, 0.01], ] theta, theta_std = np.array(theta), np.array(theta_std) t = np.linspace(0, 1, 100) c1 = _cos(theta[0]) c2 = _cos(theta[1]) S = c1 + c2 theta_init = np.array(theta, dtype=np.float64) theta_init[:, 0] += 2 - np.random.random(2) * 0.5 theta_init[:, 2] += 1 - np.random.random(2) * 0.5 mcmc = KurslMCMC(theta_init, theta_std, nwalkers=40, niter=200) mcmc.set_threshold(0.001) mcmc.set_sampler(t, S) mcmc.run() # After simulation is finished check for correctness theta_computed = mcmc.get_theta() self.assertTrue( np.allclose(theta, theta_computed, atol=0.5), "Expected:\n{}\nReceived:\n{}".format(theta, theta_computed))
def test_set_threshold(self): theta_init = self.random_theta(5, 1) mcmc = KurslMCMC(theta_init) self.assertEqual(mcmc.THRESHOLD, 0.05) self.assertEqual(mcmc.model.THRESHOLD, 0.05) mcmc.set_threshold(0.1) self.assertEqual(mcmc.THRESHOLD, 0.1) self.assertEqual(mcmc.model.THRESHOLD, 0.1)