Esempio n. 1
0
    def test_to_matrix(self):
        # Default value should be identity
        rot_d = RotationD()
        numpy.testing.assert_array_equal(rot_d.matrix(), numpy.eye(3))

        rot_f = RotationF()
        numpy.testing.assert_array_equal(rot_f.matrix(), numpy.eye(3))
Esempio n. 2
0
    def test_from_aa(self):
        # Axis should come out of rotation normalized
        angle = 0.8
        axis = [-3, 2, 1]
        axis_norm = array_normalize(axis)

        r = RotationD(angle, axis)
        nose.tools.assert_equal(angle, r.angle())
        numpy.testing.assert_equal(axis_norm, r.axis())
Esempio n. 3
0
    def test_to_ypr(self):
        # ypr identity: (pi/2, 0, pi)
        ident_ypr = (math.pi / 2, 0, -math.pi)

        rot_d = RotationD()
        rot_f = RotationF()

        numpy.testing.assert_almost_equal(rot_d.yaw_pitch_roll(), ident_ypr, 15)

        numpy.testing.assert_almost_equal(rot_f.yaw_pitch_roll(), ident_ypr)
Esempio n. 4
0
    def test_inverse(self):
        # quaternion calc from:
        #   https://www.wolframalpha.com/input/?i=quaternion:+0%2B2i-j-3k&lk=3
        r = RotationD([+2, -1, -3, +0])
        r_inv = r.inverse()
        e_inv = array_normalize([-1 / 7.0, +1 / 14.0, +3 / 14.0, 0])
        numpy.testing.assert_allclose(r_inv.quaternion(), e_inv, 1e-15)

        r = RotationF([+2, -1, -3, +0])
        r_inv = r.inverse()
        numpy.testing.assert_allclose(r_inv.quaternion(), e_inv, 1e-7)
Esempio n. 5
0
    def test_to_rodrigues(self):
        # rodrigues identity: [0,0,0]
        ident_rod = [0, 0, 0]

        rot_d = RotationD()
        rot_f = RotationF()

        rod = rot_d.rodrigues()
        numpy.testing.assert_equal(rod, ident_rod)

        rod = rot_f.rodrigues()
        numpy.testing.assert_equal(rod, ident_rod)
Esempio n. 6
0
    def test_interpolation(self):
        x_d = RotationD(0, [1, 0, 0])
        y_d = RotationD(math.pi / 2, [0, 1, 0])
        r_d = RotationD(math.pi / 4, [0, 1, 0])

        x_f = RotationF(0, [1, 0, 0])
        y_f = RotationF(math.pi / 2, [0, 1, 0])
        r_f = RotationF(math.pi / 4, [0, 1, 0])

        z_d = rotation.interpolate_rotation(x_d, y_d, 0.5)
        z_f = rotation.interpolate_rotation(x_f, y_f, 0.5)
        nose.tools.assert_almost_equal((z_d.inverse() * r_d).angle(), 0, 14)
        nose.tools.assert_almost_equal((z_f.inverse() * r_f).angle(), 0, 6)
Esempio n. 7
0
    def test_to_axis_angle(self):
        # expected identity: [0,0,1] and 0
        ident_axis = [0, 0, 1]
        ident_angle = 0

        rot_d = RotationD()
        rot_f = RotationF()

        numpy.testing.assert_equal(rot_d.axis(), ident_axis)
        nose.tools.assert_equal(rot_d.angle(), ident_angle)

        numpy.testing.assert_equal(rot_f.axis(), ident_axis)
        nose.tools.assert_equal(rot_f.angle(), ident_angle)
Esempio n. 8
0
    def test_new_default(self):
        # That these even construct
        rot_d = RotationD()
        nose.tools.assert_equal(rot_d.type_name, "d")

        rot_f = RotationF()
        nose.tools.assert_equal(rot_f.type_name, "f")
    def test_overrides(self):
        rot_ = RotationD(0, [1, 0, 0])
        intrins_ = ci(
            focal_length=10.5,
            principal_point=[3.14, 6.28],
            aspect_ratio=1.2,
            skew=3.1,
            dist_coeffs=[4.5, 5.2, 6.8],
            image_width=1080,
            image_height=720,
        )

        cent = np.array([4, 3.14, 5.67])
        cam_test = CameraPerspectiveImpl(rot_, cent, intrins_)

        np.testing.assert_array_equal(cam_test.get_center(), cent)
        nt.assert_equal(cam_test.rotation(), rot_)
        np.testing.assert_array_equal(
            cam_test.translation(),
            -(cam_test.rot.inverse() * cam_test.center))
        np.testing.assert_array_equal(
            cam_test.center_covar().matrix(),
            np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]))
        nt.assert_equal(cam_test.intrinsics(), intrins_)
        self.assertEqual(cam_test.image_height(), 720)
        self.assertEqual(cam_test.image_width(), 1080)
        np.testing.assert_array_equal(
            cam_test.pose_matrix(), np.array([[1, 0, 0], [0, 1, 0], [0, 0,
                                                                     1]]))
        np.testing.assert_array_equal(
            cam_test.as_matrix(), np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]))
        pt = np.array([1, 2, 3])
        np.testing.assert_array_equal(cam_test.project(pt), pt[:2])
        np.testing.assert_array_equal(cam_test.depth(pt), pt[2:])
Esempio n. 10
0
    def test_from_rotation(self):
        r = RotationD()
        r_cpy = RotationD(r)
        nose.tools.ok_(r == r_cpy)

        r = RotationD([1, 2, 3, 4])
        r_cpy = RotationD(r)
        nose.tools.ok_(r == r_cpy)

        r = RotationF()
        r_cpy = RotationF(r)
        nose.tools.ok_(r == r_cpy)

        r = RotationF([1, 2, 3, 4])
        r_cpy = RotationF(r)
        nose.tools.ok_(r == r_cpy)
Esempio n. 11
0
    def test_enu_ned(self):
        # ENU means x=east, y=north, z=up (default for general cv use)
        # NED means x=north, y=east, z=down (convention for yaw-pitch-roll)
        # Below are the ENU identity rotations in each coordinate system
        ident_enu = (0, 0, 0)
        ident_ned = (math.pi / 2, 0, math.pi)

        # deals with equivalence of e.g. +pi and -pi with respect to orientation
        def assert_angles_almost_equal(angles1, angles2, digits):
            for angle1, angle2 in zip(angles1, angles2):
                numpy.testing.assert_almost_equal(math.sin(angle1),
                                                  math.sin(angle2), digits)
                numpy.testing.assert_almost_equal(math.cos(angle1),
                                                  math.cos(angle2), digits)

        rot_d = rotation.enu_to_ned(RotationD())
        rot_f = rotation.enu_to_ned(RotationF())

        assert_angles_almost_equal(rot_d.yaw_pitch_roll(), ident_ned, 14)
        assert_angles_almost_equal(rot_f.yaw_pitch_roll(), ident_ned, 6)

        rot_d = rotation.ned_to_enu(rot_d)
        rot_f = rotation.ned_to_enu(rot_f)

        assert_angles_almost_equal(rot_d.yaw_pitch_roll(), ident_enu, 14)
        assert_angles_almost_equal(rot_f.yaw_pitch_roll(), ident_enu, 6)
Esempio n. 12
0
    def test_get_rotation(self):
        s = SimilarityD()
        numpy.testing.assert_array_almost_equal(s.rotation.matrix(),
                                                RotationD().matrix())

        s = SimilarityD(self.s, self.r, self.t)
        numpy.testing.assert_array_almost_equal(s.rotation.matrix(),
                                                self.r.matrix())
Esempio n. 13
0
    def test_mul(self):
        # Normalize quaternaion vector.
        expected_quat = array_normalize([+2.0, -1.0, -3.0, +0.0])

        r_ident_d = RotationD()
        r_ident_f = RotationF()
        r_other_d = RotationD(expected_quat)
        r_other_f = RotationF(expected_quat)

        r_res_d = r_ident_d * r_other_d
        nose.tools.assert_is_not(r_other_d, r_res_d)
        numpy.testing.assert_equal(r_res_d, r_other_d)
        numpy.testing.assert_equal(r_res_d.quaternion(), expected_quat)

        r_res_f = r_ident_f * r_other_f
        nose.tools.assert_is_not(r_other_f, r_res_f)
        numpy.testing.assert_equal(r_res_f, r_other_f)
        numpy.testing.assert_allclose(r_res_f.quaternion(), expected_quat, 1e-7)
Esempio n. 14
0
    def test_interpolated_rotations(self):
        x = RotationD(0, [1, 0, 0])
        a = math.pi / 2
        y = RotationD(a, [0, 1, 0])
        i_list = rotation.interpolated_rotations(x, y, 3)
        nose.tools.assert_equal([i.type_name for i in i_list], ["d"] * 3)

        i0_e_axis, i0_e_angle = [0, 1, 0], a * 0.25
        i1_e_axis, i1_e_angle = [0, 1, 0], a * 0.50
        i2_e_axis, i2_e_angle = [0, 1, 0], a * 0.75

        numpy.testing.assert_almost_equal(i_list[0].axis(), i0_e_axis, 14)
        numpy.testing.assert_almost_equal(i_list[0].angle(), i0_e_angle, 14)

        numpy.testing.assert_almost_equal(i_list[1].axis(), i1_e_axis, 14)
        numpy.testing.assert_almost_equal(i_list[1].angle(), i1_e_angle, 14)

        numpy.testing.assert_almost_equal(i_list[2].axis(), i2_e_axis, 14)
        numpy.testing.assert_almost_equal(i_list[2].angle(), i2_e_angle, 14)
Esempio n. 15
0
    def test_mul_vector(self):
        vec = [1, 0, 0]
        vec_expected = [0, 1, 0]

        r_axis = [0, 0, 1]
        r_angle = math.pi / 2.0
        r = RotationD(r_angle, r_axis)

        vec_rotated = r * vec
        numpy.testing.assert_array_almost_equal(vec_expected, vec_rotated)
Esempio n. 16
0
    def test_not_eq(self):
        # Identities should equal
        r1 = RotationD()
        r2 = RotationD()
        nose.tools.assert_false(r1 != r2)

        r3 = RotationD([1, 2, 3, 4])
        r4 = RotationD([1, 2, 3, 4])
        nose.tools.assert_false(r3 != r4)
        nose.tools.ok_(r1 != r3)

        r1 = RotationF()
        r2 = RotationF()
        nose.tools.assert_false(r1 != r2)

        r3 = RotationF([1, 2, 3, 4])
        r4 = RotationF([1, 2, 3, 4])
        nose.tools.assert_false(r3 != r4)
        nose.tools.ok_(r1 != r3)
Esempio n. 17
0
    def setUp(self):
        # Matrices
        self.rng = np.random.default_rng()
        self.rand_float_mat = 10 * self.rng.random((3, 3), dtype="f") - 5
        self.rand_double_mat = 10 * self.rng.random((3, 3), dtype="d") - 5

        # Rotation and vector
        self.rot_d = RotationD([1.0, 2.0, 3.0])
        self.rot_f = RotationF([1.0, 2.0, 3.0])
        self.translation = np.array([-1.0, 1.0, 4.0])
Esempio n. 18
0
    def test_mul_sim(self):
        s1 = SimilarityD(self.s, self.r, self.t)
        s2 = SimilarityD(0.75, RotationD([-0.5, -0.5, 1.0]), [4, 6.5, 8])

        sim_comp = (s1 * s2).matrix()
        mat_comp = numpy.dot(s1.matrix(), s2.matrix())
        print('sim12 comp:\n', sim_comp)
        print('mat comp:\n', mat_comp)
        print('sim - mat:\n', sim_comp - mat_comp)
        nose.tools.assert_almost_equal(
            numpy.linalg.norm(sim_comp - mat_comp, 2), 0., 12)
Esempio n. 19
0
    def twisted_pair_helper(self, em):
        t_norm = self.translation / np.linalg.norm(self.translation)

        r1 = em.rotation()
        r2 = em.twisted_rotation()
        t1 = em.translation()
        t2 = -t1

        rot_t_180 = RotationD(np.pi, t_norm)
        np.testing.assert_array_almost_equal(
            (rot_t_180 * r1).matrix(),
            r2.matrix(),
            6,
            err_msg="Twisted pair rotation should be 180 degree rotation around t for type {}".format(
                em.type_name
            ),
        )

        em1, em2, em3, em4 = (
            EssentialMatrixD(r1, t1),
            EssentialMatrixD(r1, t2),
            EssentialMatrixD(r2, t1),
            EssentialMatrixD(r2, t2),
        )

        m1, m2, m3, m4 = em1.matrix(), em2.matrix(), em3.matrix(), em4.matrix()
        m = em.matrix()

        nt.ok_(
            self.check_arrays_similar(m, m1),
            "Possible factorization 1 should match source for type: {}".format(
                em.type_name
            ),
        )
        nt.ok_(
            self.check_arrays_similar(m, m2),
            "Possible factorization 2 should match source for type: {}".format(
                em.type_name
            ),
        )
        nt.ok_(
            self.check_arrays_similar(m, m3),
            "Possible factorization 3 should match source for type: {}".format(
                em.type_name
            ),
        )
        nt.ok_(
            self.check_arrays_similar(m, m4),
            "Possible factorization 4 should match source for type: {}".format(
                em.type_name
            ),
        )
    def test_clone_clone_look_at(self):
        rot_ = RotationD(0, [1, 0, 0])
        intrins_ = ci(
            focal_length=10.5,
            principal_point=[3.14, 6.28],
            aspect_ratio=1.2,
            skew=3.1,
            dist_coeffs=[4.5, 5.2, 6.8],
            image_width=1080,
            image_height=720,
        )

        cent = np.array([4, 3.14, 5.67])
        cam_test = CameraPerspectiveImpl(rot_, cent, intrins_)
        campp = cph.call_clone(cam_test)
        self.assertIsInstance(campp, CameraPerspectiveImpl)
        np.testing.assert_array_equal(campp.center, cent)

        campp_look_at = cph.call_clone_look_at(cam_test, np.array([2, 3, 4]),
                                               np.array([0, 0, 1]))
        self.assertIsInstance(campp_look_at, CameraPerspectiveImpl)
        nt.assert_equal(campp_look_at.rot, RotationD(0, [0, 1, 0]))
Esempio n. 21
0
    def test_eq(self):
        # Identities should equal
        r1 = RotationD()
        r2 = RotationD()
        nose.tools.assert_equal(r1, r2)

        r3 = RotationD([1, 2, 3, 4])
        r4 = RotationD([1, 2, 3, 4])
        nose.tools.assert_equal(r3, r4)
        nose.tools.assert_false(r1 == r3)

        r1 = RotationF()
        r2 = RotationF()
        nose.tools.assert_equal(r1, r2)

        r3 = RotationF([1, 2, 3, 4])
        r4 = RotationF([1, 2, 3, 4])
        nose.tools.assert_equal(r3, r4)
        nose.tools.assert_false(r1 == r3)

        r1 = RotationD([1, 2, 3, 4])
        r2 = RotationD([-1, -2, -3, -4])
        assert r1.angle_from(r2) < 1e-12
    def test_init(self):
        rot_ = RotationD(0, [1, 0, 0])
        intrins_ = ci(
            focal_length=10.5,
            principal_point=[3.14, 6.28],
            aspect_ratio=1.2,
            skew=3.1,
            dist_coeffs=[4.5, 5.2, 6.8],
            image_width=1080,
            image_height=720,
        )

        cent = np.array([4, 3.14, 5.67])
        CameraPerspectiveImpl(rot_, cent, intrins_)
Esempio n. 23
0
 def test_from_matrix(self):
     # Create a non-identity matrix from a different constructor that we
     #   assume works
     # Create new rotation with that matrix.
     # New rotation to_matrix method should produce the same matrix
     pre_r = RotationD([+2, -1, -3, +0])
     mat = pre_r.matrix()
     r = RotationD(mat)
     numpy.testing.assert_allclose(mat, r.matrix(), 1e-15)
Esempio n. 24
0
def noisy_cameras(cam_map, pos_stddev=1., rot_stddev=1.):
    """
    Add positional and rotational gaussian noise to cameras
    :type cam_map: CameraMap
    :type pos_stddev: float
    :type rot_stddev: float
    :return: Camera map of new, noidy cameras'
    """
    cmap = {}
    for f, c in cam_map.as_dict().iteritems():
        c2 = Camera(
            c.center + random_point_3d(pos_stddev),
            c.rotation * RotationD(random_point_3d(rot_stddev)),
            c.intrinsics
        )
        cmap[f] = c2
    return CameraMap(cmap)
Esempio n. 25
0
def camera_seq(num_cams=20, k=None):
    """
    Create a camera sequence (elliptical path)
    :param num_cams: Number of cameras. Default is 20
    :param k: Camera intrinsics to use for all created cameras. Default has
        focal length = 1000 and principle point of (640, 480).
    :return:
    """
    if k is None:
        k = CameraIntrinsics(1000, [640, 480])
    d = {}
    r = RotationD()  # identity
    for i in range(num_cams):
        frac = float(i) / num_cams
        x = 4 * math.cos(2*frac)
        y = 3 * math.sin(2*frac)
        d[i] = Camera([x, y, 2+frac], r, k).clone_look_at([0, 0, 0])

    return CameraMap(d)
Esempio n. 26
0
def init_cameras(num_cams=20, intrinsics=None):
    """
    Initialize camera sequence with all cameras at the same location (0, 0, 1)
    and looking at origin.

    :param num_cams: Number of cameras to create, default 20.
    :param intrinsics: Intrinsics to use for all cameras.
    :return: Camera map of initialize cameras

    """
    if intrinsics is None:
        intrinsics = CameraIntrinsics(1000, (640, 480))
    r = RotationD()
    c = np.array([0, 0, 1])
    d = {}
    for i in range(num_cams):
        cam = Camera(c, r, intrinsics).clone_look_at([0, 0, 0],
                                                     [0, 1, 0])
        d[i] = cam
    return CameraMap(d)
    def setUp(self):
        self.intrins = ci(
            focal_length=10.5,
            principal_point=[3.14, 6.28],
            aspect_ratio=1.2,
            skew=3.1,
            dist_coeffs=[4.5, 5.2, 6.8],
            image_width=1080,
            image_height=720,
        )
        self.intrins_empty = ci()
        self.rot = RotationD(0, [1, 0, 0])
        self.vec = np.array([4, 3.14, 5.67])

        m = np.eye(3, dtype=np.double)
        m[0, 2] = 2.0
        m_expected = m.copy()
        m_expected[0, 2] = 1.0
        m_expected[2, 0] = 1.0
        self.covar3d = Covar3d(m)
Esempio n. 28
0
    def test_from_rodrigues(self):
        rod_list_1 = [0, 0, 0]

        r1 = RotationD(rod_list_1)
        numpy.testing.assert_equal(r1.rodrigues(), rod_list_1)

        # This one will get normalized by magnitude in rotation instance
        # This vector's is less than 2*pi, so we should expect this vector to be
        #   returned as is.
        rod2 = numpy.array([2, -1, 0.5])
        nod2_normed = array_normalize(rod2)
        print("r2 2-norm:", numpy.linalg.norm(rod2))
        print("r2-normed:", nod2_normed)

        r2 = RotationD(rod2)
        numpy.testing.assert_array_almost_equal(
            r2.rodrigues(), rod2, decimal=14,  # 1e-14
        )
    def test_not_overidden(self):
        # Test getters
        scap_ = scap(center=self.vec,
                     rotation=self.rot,
                     intrinsics=self.intrins)
        np.testing.assert_array_equal(scap_.get_center(), self.vec)
        self.assertIsInstance(scap_.get_rotation(), RotationD)
        nt.assert_equal(scap_.get_rotation(), self.rot)
        self.assertIsInstance(scap_.get_intrinsics(), ci)
        nt.assert_equal(scap_.get_intrinsics(), self.intrins)

        # Test setters
        new_center = np.array([0, 2, 0])
        scap_.set_center(new_center)
        np.testing.assert_array_equal(scap_.get_center(), new_center)
        new_rot = RotationD(1, np.array([0, 2, 0]))
        scap_.set_rotation(new_rot)
        nt.assert_equal(scap_.get_rotation(), new_rot)
        scap_.set_intrinsics(self.intrins_empty)
        nt.assert_equal(scap_.get_intrinsics(), self.intrins_empty)
        scap_.set_translation(np.array([1, 0, 3]))
        np.testing.assert_array_equal(
            scap_.get_center(),
            -(scap_.get_rotation().inverse() * np.array([1, 0, 3])))

        # Test covar setter/gettter
        m_out = self.covar3d.matrix()
        scap_.set_center_covar(self.covar3d)
        np.testing.assert_array_equal(scap_.get_center_covar().matrix(), m_out)

        # Test other (look_at)
        scap_ = scap()
        scap_.look_at(np.array([1, 0, 0]), np.array([0, 0, 1]))
        rot_ = scap_.get_rotation()
        np.testing.assert_array_almost_equal(
            rot_.matrix(), np.array([[0, -1, 0], [0, 0, -1], [1, 0, 0]]))
Esempio n. 30
0
 def test_new_default(self):
     self.check_members_equal(SimilarityD(), 'd', 1,
                              RotationD().matrix(), [0, 0, 0], 15)
     self.check_members_equal(SimilarityF(), 'f', 1,
                              RotationF().matrix(), [0, 0, 0], 6)