Esempio n. 1
0
def test_compute_mse_error(tmp_path: Path, zarr_dataset: ChunkedDataset, cfg: dict) -> None:
    render_context = RenderContext(
        np.asarray((10, 10)),
        np.asarray((0.25, 0.25)),
        np.asarray((0.5, 0.5)),
        set_origin_to_bottom=cfg["raster_params"]["set_origin_to_bottom"],
    )
    rast = StubRasterizer(render_context)
    dataset = AgentDataset(cfg, zarr_dataset, rast)

    gt_coords = []
    gt_avails = []
    timestamps = []
    track_ids = []

    for idx, el in enumerate(dataset):  # type: ignore
        gt_coords.append(el["target_positions"])
        gt_avails.append(el["target_availabilities"])
        timestamps.append(el["timestamp"])
        track_ids.append(el["track_id"])
        if idx == 100:
            break  # speed up test

    gt_coords = np.asarray(gt_coords)
    gt_avails = np.asarray(gt_avails)
    timestamps = np.asarray(timestamps)
    track_ids = np.asarray(track_ids)

    # test same values error
    write_gt_csv(str(tmp_path / "gt1.csv"), timestamps, track_ids, gt_coords, gt_avails)
    write_pred_csv(str(tmp_path / "pred1.csv"), timestamps, track_ids, gt_coords, confs=None)

    metrics = compute_metrics_csv(str(tmp_path / "gt1.csv"), str(tmp_path / "pred1.csv"), [neg_multi_log_likelihood])
    for metric_value in metrics.values():
        assert np.all(metric_value == 0.0)

    # test different values error
    pred_coords = gt_coords.copy()
    pred_coords += np.random.randn(*pred_coords.shape)
    write_pred_csv(str(tmp_path / "pred3.csv"), timestamps, track_ids, pred_coords, confs=None)

    metrics = compute_metrics_csv(str(tmp_path / "gt1.csv"), str(tmp_path / "pred3.csv"), [neg_multi_log_likelihood])
    for metric_value in metrics.values():
        assert np.any(metric_value > 0.0)

    # test invalid conf by removing lines in gt1
    with open(str(tmp_path / "pred4.csv"), "w") as fp:
        lines = open(str(tmp_path / "pred1.csv")).readlines()
        fp.writelines(lines[:-10])

    with pytest.raises(ValueError):
        compute_metrics_csv(str(tmp_path / "gt1.csv"), str(tmp_path / "pred4.csv"), [neg_multi_log_likelihood])
Esempio n. 2
0
def test_write_gt_csv(tmpdir: Path) -> None:
    dump_path = str(tmpdir / "gt_out.csv")
    num_example, future_len, num_coords = 100, 12, 2

    timestamps = np.zeros(num_example)
    track_ids = np.zeros(num_example)

    # test some invalid shapes for coords and avails
    with pytest.raises(AssertionError):
        coords = np.zeros(
            (num_example, 2, future_len, num_coords))  # gt multi-modal
        avails = np.zeros((num_example, future_len))
        write_gt_csv(dump_path, timestamps, track_ids, coords, avails)
    with pytest.raises(AssertionError):
        coords = np.zeros((num_example, future_len, num_coords))
        avails = np.zeros((num_example, future_len + 5))  # mismatch
        write_gt_csv(dump_path, timestamps, track_ids, coords, avails)
    with pytest.raises(AssertionError):
        coords = np.zeros((num_example, future_len, num_coords))
        avails = np.zeros(
            (num_example, future_len, num_coords))  # avails per coords
        write_gt_csv(dump_path, timestamps, track_ids, coords, avails)

    # test a valid configuration
    coords = np.zeros((num_example, future_len, num_coords))
    avails = np.zeros((num_example, future_len))
    write_gt_csv(dump_path, timestamps, track_ids, coords, avails)
    assert Path(dump_path).exists()
Esempio n. 3
0
def test_e2e_gt_csv(tmpdir: Path) -> None:
    dump_path = str(tmpdir / "gt_out.csv")
    num_example, future_len, num_coords = 100, 12, 2

    timestamps = np.random.randint(1000, 2000, num_example)
    track_ids = np.random.randint(0, 200, num_example)
    coords = np.random.randn(*(num_example, future_len, num_coords))
    avails = np.random.randint(0, 2, (num_example, future_len))
    write_gt_csv(dump_path, timestamps, track_ids, coords, avails)

    # read and check values
    for idx, el in enumerate(read_gt_csv(dump_path)):
        assert int(el["track_id"]) == track_ids[idx]
        assert int(el["timestamp"]) == timestamps[idx]
        assert np.allclose(el["coord"], coords[idx], atol=1e-4)
        assert np.allclose(el["avail"], avails[idx])
Esempio n. 4
0
        valid_coords_gts.append(data["target_positions"].numpy().copy())
        target_avail_pd.append(
            data["target_availabilities"].unsqueeze(-1).numpy().copy())

timestamps_concat = np.concatenate(timestamps)
track_ids_concat = np.concatenate(agent_ids)
coords_concat = np.concatenate(future_coords_offsets_pd)
gt_valid_final = np.concatenate(valid_coords_gts)
target_avail_concat = np.concatenate(target_avail_pd)

if test == TEST_CONF[0] or test == TEST_CONF[1]:

    # generate ground truth csv
    write_gt_csv(csv_path=eval_gt_path,
                 timestamps=timestamps_concat,
                 track_ids=track_ids_concat,
                 coords=gt_valid_final,
                 avails=target_avail_concat.squeeze(-1))

    num_examples = gt_valid_final.shape[0]
    confidence = np.array([0.33, 0.33, 0.34])
    confidences = np.empty((num_examples, 3))
    for i in range(num_examples):
        confidences[i] = confidence

    # submission.csv
    write_pred_csv(pred_path,
                   timestamps=timestamps_concat,
                   track_ids=track_ids_concat,
                   coords=coords_concat,
                   confs=confidences)