def main(method,LR_start,Binarize_weight_only, SEQ_LENGTH): lasagne.random.set_rng(np.random.RandomState(1)) name = "linux" print("dataset = "+str(name)) print("Binarize_weight_only="+str(Binarize_weight_only)) print("Method = "+str(method)) # Sequence Length SEQ_LENGTH = SEQ_LENGTH # SEQ_LENGTH = 100 #can have diffvalues 50, 100, 200 print("SEQ_LENGTH = "+str(SEQ_LENGTH)) # Number of units in the two hidden (LSTM) layers N_HIDDEN = 512 print("N_HIDDEN = "+str(N_HIDDEN)) # All gradients above this will be clipped GRAD_CLIP=5. #### this clip the gradients at every time step, while T.clip clips the sum of gradients as a whole print("GRAD_CLIP ="+str(GRAD_CLIP)) # Number of epochs to train the net num_epochs = 200 print("num_epochs = "+str(num_epochs)) # Batch Size batch_size = 100 print("batch_size = "+str(batch_size)) print("LR_start = "+str(LR_start)) LR_decay = 0.98 print("LR_decay="+str(LR_decay)) if Binarize_weight_only =="w": activation = lasagne.nonlinearities.tanh else: activation = lab.binary_tanh_unit print("activation = "+ str(activation)) name = name+"_"+Binarize_weight_only ## load data, change data file dir with open('data/linux_input.txt', 'r') as f: in_text = f.read() generation_phrase = "Copyright (C) 1992, 1998-2004 Linus Torvalds, Ingo Molnar\n *\n * This file contains the interrupt probing code and driver APIs.\n */\n\n#include" #This snippet loads the text file and creates dictionaries to #encode characters into a vector-space representation and vice-versa. chars = list(set(in_text)) data_size, vocab_size = len(in_text), len(chars) char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } num_splits = [0.9, 0.05, 0.05] num_splits_all = np.floor(data_size/batch_size/SEQ_LENGTH) num_train = np.floor(num_splits_all*num_splits[0]) num_val = np.floor(num_splits_all*num_splits[1]) num_test = num_splits_all - num_train - num_val train_X = in_text[0:(num_train*batch_size*SEQ_LENGTH+1).astype('int32')] val_X = in_text[(num_train*batch_size*SEQ_LENGTH).astype('int32'):((num_train+num_val)*batch_size*SEQ_LENGTH+1).astype('int32')] test_X = in_text[((num_train+num_val)*batch_size*SEQ_LENGTH).astype('int32'):(num_splits_all*batch_size*SEQ_LENGTH+1).astype('int32')] ## build model print('Building the model...') # input = T.tensor3('inputs') target = T.imatrix('target') LR = T.scalar('LR', dtype=theano.config.floatX) # (batch size, SEQ_LENGTH, num_features) l_in = lasagne.layers.InputLayer(shape=(None, None, vocab_size)) l_forward_2 = lab.LSTMLayer( l_in, num_units=N_HIDDEN, grad_clipping=GRAD_CLIP, peepholes=False, nonlinearity=activation, ### change this activation can change the hidden layer to binary method=method) ### batch_size*SEQ_LENGTH*N_HIDDEN l_shp = lasagne.layers.ReshapeLayer(l_forward_2, (-1, N_HIDDEN)) ## (batch_size*SEQ_LENGTH, N_HIDDEN) l_out = lasagne.layers.DenseLayer(l_shp, num_units=vocab_size, W = lasagne.init.Normal(), nonlinearity=lasagne.nonlinearities.softmax) batchsize, seqlen, _ = l_in.input_var.shape l_shp1 = lasagne.layers.ReshapeLayer(l_out, (batchsize, seqlen, vocab_size)) l_out1 = lasagne.layers.SliceLayer(l_shp1, -1, 1) train_output = lasagne.layers.get_output(l_out, deterministic=False) loss = T.nnet.categorical_crossentropy(train_output,target.flatten()).mean() if method!= "FPN": # W updates W = lasagne.layers.get_all_params(l_out, binary=True) W_grads = lab.compute_grads(loss,l_out) updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR, epsilon = 1e-8) ### can choose different methods to update updates = lab.clipping_scaling(updates,l_out) # other parameters updates params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False) updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR, epsilon = 1e-8).items()) ## update 2 momentum updates3 = OrderedDict() acc_tag = lasagne.layers.get_all_params(l_out, acc=True) idx = 0 beta2 = 0.999 for acc_tag_temp in acc_tag: # updates3[acc_tag_temp]=updates.keys()[idx] updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2) idx = idx+1 updates = OrderedDict(updates.items() + updates3.items()) else: params_other = lasagne.layers.get_all_params(l_out, trainable=True) W_grads = [theano.grad(loss, wrt=l_forward_2.W_in_to_ingate), theano.grad(loss, wrt=l_forward_2.W_hid_to_ingate), theano.grad(loss, wrt=l_forward_2.W_in_to_fotgetgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_forgetgate), theano.grad(loss, wrt=l_forward_2.W_in_to_cell),theano.grad(loss, wrt=l_forward_2.W_hid_to_cell), theano.grad(loss, wrt=l_forward_2.W_in_to_outgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_outgate)] updates = optimizer.adam(loss_or_grads=loss, params=params_other, learning_rate=LR) test_output = lasagne.layers.get_output(l_out, deterministic=True) test_loss = T.nnet.categorical_crossentropy(test_output,target.flatten()).mean() train_fn = theano.function([l_in.input_var, target, LR], [loss, W_grads[5]], updates=updates, allow_input_downcast=True) val_fn = theano.function([l_in.input_var, target], test_loss, allow_input_downcast=True) probs = theano.function([l_in.input_var],lasagne.layers.get_output(l_out1), allow_input_downcast=True) print('Training...') lab.train( name, method, train_fn,val_fn, batch_size, SEQ_LENGTH, N_HIDDEN, LR_start,LR_decay, num_epochs, train_X, val_X, test_X)
def main(method, LR_start, Binarize_weight_only): name = "svhn" print("dataset = " + str(name)) print("Binarize_weight_only=" + str(Binarize_weight_only)) print("Method = " + str(method)) # alpha is the exponential moving average factor alpha = .1 print("alpha = " + str(alpha)) epsilon = 1e-4 print("epsilon = " + str(epsilon)) # Training parameters batch_size = 50 print("batch_size = " + str(batch_size)) num_epochs = 50 print("num_epochs = " + str(num_epochs)) print("LR_start = " + str(LR_start)) LR_decay = 0.1 print("LR_decay=" + str(LR_decay)) # BTW, LR decay might good for the BN moving average... if Binarize_weight_only == "w": activation = lasagne.nonlinearities.rectify else: activation = lab.binary_tanh_unit print("activation = " + str(activation)) ## number of filters in the first convolutional layer K = 64 print("K=" + str(K)) print('Building the CNN...') # Prepare Theano variables for inputs and targets input = T.tensor4('inputs') target = T.matrix('targets') LR = T.scalar('LR', dtype=theano.config.floatX) l_in = lasagne.layers.InputLayer(shape=(None, 3, 32, 32), input_var=input) # 128C3-128C3-P2 l_cnn1 = lab.Conv2DLayer(l_in, num_filters=K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_bn1 = batch_norm.BatchNormLayer(l_cnn1, epsilon=epsilon, alpha=alpha) l_nl1 = lasagne.layers.NonlinearityLayer(l_bn1, nonlinearity=activation) l_cnn2 = lab.Conv2DLayer(l_nl1, num_filters=K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2)) l_bn2 = batch_norm.BatchNormLayer(l_mp1, epsilon=epsilon, alpha=alpha) l_nl2 = lasagne.layers.NonlinearityLayer(l_bn2, nonlinearity=activation) # 256C3-256C3-P2 l_cnn3 = lab.Conv2DLayer(l_nl2, num_filters=2 * K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_bn3 = batch_norm.BatchNormLayer(l_cnn3, epsilon=epsilon, alpha=alpha) l_nl3 = lasagne.layers.NonlinearityLayer(l_bn3, nonlinearity=activation) l_cnn4 = lab.Conv2DLayer(l_nl3, num_filters=2 * K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2)) l_bn4 = batch_norm.BatchNormLayer(l_mp2, epsilon=epsilon, alpha=alpha) l_nl4 = lasagne.layers.NonlinearityLayer(l_bn4, nonlinearity=activation) # 512C3-512C3-P2 l_cnn5 = lab.Conv2DLayer(l_nl4, num_filters=4 * K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_bn5 = batch_norm.BatchNormLayer(l_cnn5, epsilon=epsilon, alpha=alpha) l_nl5 = lasagne.layers.NonlinearityLayer(l_bn5, nonlinearity=activation) l_cnn6 = lab.Conv2DLayer(l_nl5, num_filters=4 * K, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method=method) l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2)) l_bn6 = batch_norm.BatchNormLayer(l_mp3, epsilon=epsilon, alpha=alpha) l_nl6 = lasagne.layers.NonlinearityLayer(l_bn6, nonlinearity=activation) # print(cnn.output_shape) # 1024FP-1024FP-10FP l_dn1 = lab.DenseLayer(l_nl6, nonlinearity=lasagne.nonlinearities.identity, num_units=1024, method=method) l_bn7 = batch_norm.BatchNormLayer(l_dn1, epsilon=epsilon, alpha=alpha) l_nl7 = lasagne.layers.NonlinearityLayer(l_bn7, nonlinearity=activation) l_dn2 = lab.DenseLayer(l_nl7, nonlinearity=lasagne.nonlinearities.identity, num_units=1024, method=method) l_bn8 = batch_norm.BatchNormLayer(l_dn2, epsilon=epsilon, alpha=alpha) l_nl8 = lasagne.layers.NonlinearityLayer(l_bn8, nonlinearity=activation) l_dn3 = lab.DenseLayer(l_nl8, nonlinearity=lasagne.nonlinearities.identity, num_units=10, method=method) l_out = batch_norm.BatchNormLayer(l_dn3, epsilon=epsilon, alpha=alpha) train_output = lasagne.layers.get_output(l_out, deterministic=False) # squared hinge loss loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output))) if method != "FPN": # W updates W = lasagne.layers.get_all_params(l_out, binary=True) W_grads = lab.compute_grads(loss, l_out) updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR) updates = lab.clipping_scaling(updates, l_out) # other parameters updates params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False) updates = OrderedDict(updates.items() + optimizer.adam( loss_or_grads=loss, params=params, learning_rate=LR).items()) ## update 2nd moment, can get from the adam optimizer also updates3 = OrderedDict() acc_tag = lasagne.layers.get_all_params(l_out, acc=True) idx = 0 beta2 = 0.999 for acc_tag_temp in acc_tag: updates3[acc_tag_temp] = acc_tag_temp * beta2 + W_grads[ idx] * W_grads[idx] * (1 - beta2) idx = idx + 1 updates = OrderedDict(updates.items() + updates3.items()) else: params = lasagne.layers.get_all_params(l_out, trainable=True) updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR) test_output = lasagne.layers.get_output(l_out, deterministic=True) test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output))) test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving the updates dictionary) # and returning the corresponding training loss: train_fn = theano.function([input, target, LR], loss, updates=updates) val_fn = theano.function([input, target], [test_loss, test_err]) ## load data print('Loading SVHN dataset') train_set = SVHN( which_set='splitted_train', # which_set= 'valid', path="${SVHN_LOCAL_PATH}", axes=['b', 'c', 0, 1]) valid_set = SVHN(which_set='valid', path="${SVHN_LOCAL_PATH}", axes=['b', 'c', 0, 1]) test_set = SVHN(which_set='test', path="${SVHN_LOCAL_PATH}", axes=['b', 'c', 0, 1]) # bc01 format # print train_set.X.shape train_set.X = np.reshape(train_set.X, (-1, 3, 32, 32)) valid_set.X = np.reshape(valid_set.X, (-1, 3, 32, 32)) test_set.X = np.reshape(test_set.X, (-1, 3, 32, 32)) train_set.y = np.array(train_set.y).flatten() valid_set.y = np.array(valid_set.y).flatten() test_set.y = np.array(test_set.y).flatten() # Onehot the targets train_set.y = np.float32(np.eye(10)[train_set.y]) valid_set.y = np.float32(np.eye(10)[valid_set.y]) test_set.y = np.float32(np.eye(10)[test_set.y]) # for hinge loss train_set.y = 2 * train_set.y - 1. valid_set.y = 2 * valid_set.y - 1. test_set.y = 2 * test_set.y - 1. print('Training...') # ipdb.set_trace() lab.train(name, method, train_fn, val_fn, batch_size, LR_start, LR_decay, num_epochs, train_set.X, train_set.y, valid_set.X, valid_set.y, test_set.X, test_set.y)
def main(method, LR_start, Binarize_weight_only): # BN parameters name = "mnist" print("dataset = " + str(name)) print("Binarize_weight_only=" + str(Binarize_weight_only)) print("Method = " + str(method)) # alpha is the exponential moving average factor alpha = .1 print("alpha = " + str(alpha)) epsilon = 1e-4 print("epsilon = " + str(epsilon)) batch_size = 100 print("batch_size = " + str(batch_size)) num_epochs = 50 print("num_epochs = " + str(num_epochs)) # network structure num_units = 2048 print("num_units = " + str(num_units)) n_hidden_layers = 3 print("n_hidden_layers = " + str(n_hidden_layers)) print("LR_start = " + str(LR_start)) LR_decay = 0.1 print("LR_decay=" + str(LR_decay)) if Binarize_weight_only == "w": activation = lasagne.nonlinearities.rectify else: activation = lab.binary_tanh_unit print("activation = " + str(activation)) print('Loading MNIST dataset...') train_set = MNIST(which_set='train', start=0, stop=50000, center=True) valid_set = MNIST(which_set='train', start=50000, stop=60000, center=True) test_set = MNIST(which_set='test', center=True) # bc01 format train_set.X = train_set.X.reshape(-1, 1, 28, 28) valid_set.X = valid_set.X.reshape(-1, 1, 28, 28) test_set.X = test_set.X.reshape(-1, 1, 28, 28) # flatten targets train_set.y = np.hstack(train_set.y) valid_set.y = np.hstack(valid_set.y) test_set.y = np.hstack(test_set.y) # Onehot the targets train_set.y = np.float32(np.eye(10)[train_set.y]) valid_set.y = np.float32(np.eye(10)[valid_set.y]) test_set.y = np.float32(np.eye(10)[test_set.y]) # for hinge loss train_set.y = 2 * train_set.y - 1. valid_set.y = 2 * valid_set.y - 1. test_set.y = 2 * test_set.y - 1. print('Building the MLP...') # Prepare Theano variables for inputs and targets input = T.tensor4('inputs') target = T.matrix('targets') LR = T.scalar('LR', dtype=theano.config.floatX) mlp = lasagne.layers.InputLayer(shape=(None, 1, 28, 28), input_var=input) for k in range(n_hidden_layers): mlp = lab.DenseLayer(mlp, nonlinearity=lasagne.nonlinearities.identity, num_units=num_units, method=method) mlp = batch_norm.BatchNormLayer(mlp, epsilon=epsilon, alpha=alpha) mlp = lasagne.layers.NonlinearityLayer(mlp, nonlinearity=activation) mlp = lab.DenseLayer(mlp, nonlinearity=lasagne.nonlinearities.identity, num_units=10, method=method) mlp = batch_norm.BatchNormLayer(mlp, epsilon=epsilon, alpha=alpha) train_output = lasagne.layers.get_output(mlp, deterministic=False) # squared hinge loss loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output))) if method != "FPN": # W updates W = lasagne.layers.get_all_params(mlp, binary=True) W_grads = lab.compute_grads(loss, mlp) updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR) updates = lab.clipping_scaling(updates, mlp) # other parameters updates params = lasagne.layers.get_all_params(mlp, trainable=True, binary=False) updates = OrderedDict(updates.items() + optimizer.adam( loss_or_grads=loss, params=params, learning_rate=LR).items()) ## update 2nd moment, can get from the adam optimizer also updates3 = OrderedDict() acc_tag = lasagne.layers.get_all_params(mlp, acc=True) idx = 0 beta2 = 0.999 for acc_tag_temp in acc_tag: updates3[acc_tag_temp] = acc_tag_temp * beta2 + W_grads[ idx] * W_grads[idx] * (1 - beta2) idx = idx + 1 updates = OrderedDict(updates.items() + updates3.items()) else: params = lasagne.layers.get_all_params(mlp, trainable=True) updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR) test_output = lasagne.layers.get_output(mlp, deterministic=True) test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output))) test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving the updates dictionary) # and returning the corresponding training loss: train_fn = theano.function([input, target, LR], loss, updates=updates) val_fn = theano.function([input, target], [test_loss, test_err]) print('Training...') lab.train(name, method, train_fn, val_fn, batch_size, LR_start, LR_decay, num_epochs, train_set.X, train_set.y, valid_set.X, valid_set.y, test_set.X, test_set.y)
def main(method,LR_start,Binarize_weight_only): name = "cifar" print("dataset = "+str(name)) print("Binarize_weight_only="+str(Binarize_weight_only)) print("Method = "+str(method)) # alpha is the exponential moving average factor alpha = .1 print("alpha = "+str(alpha)) epsilon = 1e-4 print("epsilon = "+str(epsilon)) # Training parameters batch_size = 50 print("batch_size = "+str(batch_size)) num_epochs = 200 print("num_epochs = "+str(num_epochs)) print("LR_start = "+str(LR_start)) LR_decay = 0.5 print("LR_decay="+str(LR_decay)) if Binarize_weight_only =="w": activation = lasagne.nonlinearities.rectify else: activation = lab.binary_tanh_unit print("activation = "+ str(activation)) train_set_size = 45000 print("train_set_size = "+str(train_set_size)) print('Loading CIFAR-10 dataset...') preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl") train_set = ZCA_Dataset( preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), preprocessor = preprocessor, start=0, stop = train_set_size) valid_set = ZCA_Dataset( preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), preprocessor = preprocessor, start=45000, stop = 50000) test_set = ZCA_Dataset( preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"), preprocessor = preprocessor) # bc01 format train_set.X = train_set.X.reshape(-1,3,32,32) valid_set.X = valid_set.X.reshape(-1,3,32,32) test_set.X = test_set.X.reshape(-1,3,32,32) # flatten targets train_set.y = np.hstack(train_set.y) valid_set.y = np.hstack(valid_set.y) test_set.y = np.hstack(test_set.y) # Onehot the targets train_set.y = np.float32(np.eye(10)[train_set.y]) valid_set.y = np.float32(np.eye(10)[valid_set.y]) test_set.y = np.float32(np.eye(10)[test_set.y]) # for hinge loss train_set.y = 2* train_set.y - 1. valid_set.y = 2* valid_set.y - 1. test_set.y = 2* test_set.y - 1. print('Building the CNN...') # Prepare Theano variables for inputs and targets input = T.tensor4('inputs') target = T.matrix('targets') LR = T.scalar('LR', dtype=theano.config.floatX) l_in = lasagne.layers.InputLayer( shape=(None, 3, 32, 32), input_var=input) # 128C3-128C3-P2 l_cnn1 = lab.Conv2DLayer( l_in, num_filters=128, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_bn1 = batch_norm.BatchNormLayer( l_cnn1, epsilon=epsilon, alpha=alpha) l_nl1 = lasagne.layers.NonlinearityLayer( l_bn1, nonlinearity = activation) l_cnn2 = lab.Conv2DLayer( l_nl1, num_filters=128, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2)) l_bn2 = batch_norm.BatchNormLayer( l_mp1, epsilon=epsilon, alpha=alpha) l_nl2 = lasagne.layers.NonlinearityLayer( l_bn2, nonlinearity = activation) # 256C3-256C3-P2 l_cnn3 = lab.Conv2DLayer( l_nl2, num_filters=256, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_bn3 = batch_norm.BatchNormLayer( l_cnn3, epsilon=epsilon, alpha=alpha) l_nl3 = lasagne.layers.NonlinearityLayer( l_bn3, nonlinearity = activation) l_cnn4 = lab.Conv2DLayer( l_nl3, num_filters=256, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2)) l_bn4 = batch_norm.BatchNormLayer( l_mp2, epsilon=epsilon, alpha=alpha) l_nl4 = lasagne.layers.NonlinearityLayer( l_bn4, nonlinearity = activation) # 512C3-512C3-P2 l_cnn5 = lab.Conv2DLayer( l_nl4, num_filters=512, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_bn5 = batch_norm.BatchNormLayer( l_cnn5, epsilon=epsilon, alpha=alpha) l_nl5 = lasagne.layers.NonlinearityLayer( l_bn5, nonlinearity = activation) l_cnn6 = lab.Conv2DLayer( l_nl5, num_filters=512, filter_size=(3, 3), pad=1, nonlinearity=lasagne.nonlinearities.identity, method = method) l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2)) l_bn6 = batch_norm.BatchNormLayer( l_mp3, epsilon=epsilon, alpha=alpha) l_nl6 = lasagne.layers.NonlinearityLayer( l_bn6, nonlinearity = activation) # print(cnn.output_shape) # 1024FP-1024FP-10FP l_dn1 = lab.DenseLayer( l_nl6, nonlinearity=lasagne.nonlinearities.identity, num_units=1024, method = method) l_bn7 = batch_norm.BatchNormLayer( l_dn1, epsilon=epsilon, alpha=alpha) l_nl7 = lasagne.layers.NonlinearityLayer( l_bn7, nonlinearity = activation) l_dn2 = lab.DenseLayer( l_nl7, nonlinearity=lasagne.nonlinearities.identity, num_units=1024, method = method) l_bn8 = batch_norm.BatchNormLayer( l_dn2, epsilon=epsilon, alpha=alpha) l_nl8 = lasagne.layers.NonlinearityLayer( l_bn8, nonlinearity = activation) l_dn3 = lab.DenseLayer( l_nl8, nonlinearity=lasagne.nonlinearities.identity, num_units=10, method = method) l_out = batch_norm.BatchNormLayer( l_dn3, epsilon=epsilon, alpha=alpha) train_output = lasagne.layers.get_output(l_out, deterministic=False) # squared hinge loss loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output))) if method!="FPN": # W updates W = lasagne.layers.get_all_params(l_out, binary=True) W_grads = lab.compute_grads(loss,l_out) updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR) updates = lab.clipping_scaling(updates,l_out) # other parameters updates params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False) updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items()) ## update 2nd moment, can get from the adam optimizer also updates3 = OrderedDict() acc_tag = lasagne.layers.get_all_params(l_out, acc=True) idx = 0 beta2 = 0.999 for acc_tag_temp in acc_tag: updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2) idx = idx+1 updates = OrderedDict(updates.items() + updates3.items()) else: params = lasagne.layers.get_all_params(l_out, trainable=True) updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR) test_output = lasagne.layers.get_output(l_out, deterministic=True) test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output))) test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving the updates dictionary) # and returning the corresponding training loss: train_fn = theano.function([input, target, LR], loss, updates=updates) val_fn = theano.function([input, target], [test_loss, test_err]) print('Training...') lab.train( name, method, train_fn,val_fn, batch_size, LR_start,LR_decay, num_epochs, train_set.X,train_set.y, valid_set.X,valid_set.y, test_set.X,test_set.y)