def backward_algorithm():
    wordHMMs = {}
    isolated = get_isolated(prondict)
    plot_p_color_mesh(example['logbeta'], 'example beta matrix')

    # verify implementation
    wordHMMs['o'] = concatHMMs(phoneHMMsAll, isolated['o'])
    log_st_prob = np.log(wordHMMs['o']['startprob'])
    log_transmat = np.log(wordHMMs['o']['transmat'])
    beta_matrix = backward(example['obsloglik'], log_st_prob, log_transmat)
    plot_p_color_mesh(beta_matrix, "hmms all output example beta matrix")
def EM(lmfcc, obsloglik, model):
    log_st_prob = np.log(model['startprob'])
    log_transmat = np.log(model['transmat'])
    # E step
    beta_matrix = backward(obsloglik, log_st_prob, log_transmat)
    alpha_matrix = forward(obsloglik, log_st_prob, log_transmat)
    posterior = statePosteriors(alpha_matrix, beta_matrix)
    #M step
    new_mean, new_var = updateMeanAndVar(lmfcc, posterior)
    model['means'] = new_mean
    model['covars'] = new_var
    return model
Esempio n. 3
0
def retrain(feature, model, num_iters=20, threshold=1):

    # extract params
    means = model['means']
    covars = model['covars']
    transmat = model['transmat'][:-1, :-1]
    startprob = model['startprob'][:-1]
    log_pi = np.log(startprob)
    log_trans = np.log(transmat)

    # calculate the emission
    obsloglik = log_multivariate_normal_density_diag(feature, means, covars)

    # EM algorithm
    loglik_old = -np.inf
    for iter_ in range(num_iters):
        # E-step
        log_alpha = forward(obsloglik, log_pi, log_trans)
        log_beta = backward(obsloglik, log_pi, log_trans)
        log_gamma = statePosteriors(log_alpha, log_beta)

        # M-step
        means, covars = updateMeanAndVar(feature, log_gamma)
        # update
        obsloglik = log_multivariate_normal_density_diag(
            feature, means, covars)

        loglik = logsumexp(log_alpha[-1])
        print("Iter {}: The log likelihood in EM:".format(iter_), loglik)

        # check if terminate EM
        if (loglik - loglik_old) < threshold or np.isnan(loglik):
            print("Terminating the EM")
            break
        else:
            loglik_old = loglik
Esempio n. 4
0
    # load data
    data = np.load('data/lab2_data.npz')['data']
    example = np.load('data/lab2_example.npz')['example'].item()
    phoneHMMs = np.load('data/lab2_models_onespkr.npz')['phoneHMMs'].item()

    # Build hmm
    wordHMMs = {}
    wordHMMs['o'] = concatHMMs(phoneHMMs, isolated['o'])

    trans_mat = wordHMMs['o']['transmat'][:-1, :-1]
    pi_vec = wordHMMs['o']['startprob'][:-1]
    log_startprob = np.log(pi_vec)
    log_transmat = np.log(trans_mat)
    log_emlik = example['obsloglik']
    # =====================================================
    log_beta = backward(log_emlik, log_startprob, log_transmat)
    log_alpha = forward(log_emlik, log_startprob, log_transmat)

    # caculate the log gamma
    log_gamma = statePosteriors(log_alpha, log_beta)

    # print(np.allclose(example['loggamma'], log_gamma))

    # check if sum to one in linear / sum to zero in log domain
    ntime_steps = log_gamma.shape[0]
    zeros = np.zeros((ntime_steps))
    # print(np.allclose(logsumexp(log_gamma, axis=1), zeros))
    # ====================================================================
    # See notes, just do the normalization to get the state posterior of GMM
    logZ = logsumexp(log_emlik,
                     axis=1)  # the normalization factor in log space