Esempio n. 1
0
File: lab2.py Progetto: BPrepos/MiI
def eliminate2(n):
    u2 = 50 * random(x0, z, n)
    u1 = random(1.7231 * x0, z - 2, n)
    list = []
    for i in range(len(u2)):
        if u2[i] <= fin2(u1[i]):
            list.append(u1[i])
    return list
Esempio n. 2
0
File: lab2.py Progetto: BPrepos/MiI
def eliminateCauchy(n):
    u2 = 0.35 * random(0.1423123, 13, n)
    u1 = 4 * random(0.1221321, 11, n) - 8
    list = []
    for i in range(len(u2)):
        if u2[i] <= finCauchy(u1[i]):
            list.append(u1[i])
    return list
Esempio n. 3
0
File: lab2.py Progetto: BPrepos/MiI
def eliminate1(n):
    u2 = random(x0, z, n)
    u1 = 2 * random(1.7231 * x0, z - 2, n) - 1
    list = []
    for i in range(len(u2)):
        if u2[i] <= fin1(u1[i]):
            list.append(u1[i])
    return list
Esempio n. 4
0
File: lab4.py Progetto: BPrepos/MiI
def eliminate_cauchy_upgraded(n):
    tmplist = []
    num_of_elements = 0
    i = 0
    u2 = 0.35 * random(0.1231231213, 11, 5 * n)
    u1 = 10 * random(0.1221321, 11, 5 * n) - 5
    while (num_of_elements < n):
        if u2[i] <= finCauchy(u1[i]):
            tmplist.append(u1[i])
            num_of_elements += 1
        i += 1
    return tmplist
Esempio n. 5
0
File: lab4.py Progetto: BPrepos/MiI
def eliminate41(n):
    tmplist = []
    d = 2
    num_of_elements = 0
    i = 0
    u2 = d * random(0.1231231213, 11, 3 * n)
    u1 = random(0.14421322321, 15, 3 * n)
    while (num_of_elements < n):
        if u2[i] <= function41(u1[i]):
            tmplist.append(u1[i])
            num_of_elements += 1
        i += 1
    return tmplist
Esempio n. 6
0
File: lab2.py Progetto: BPrepos/MiI
def eliminate4(n, x00):
    c = sqrt(2 * np.e / np.pi)
    V = f4(n)
    U = random(x00, z, n)
    list = []
    for i in range(len(V)):
        if np.fabs(V[i]) <= sqrt(-2 * np.log(U[i])) + 1:
            list.append(V[i])
    return list
Esempio n. 7
0
File: lab6.py Progetto: BPrepos/MiI
import numpy as np
import matplotlib.pyplot as plt
from labgotowe import random
from lab5 import rectangular_kernel, epanechnikov_kernel, boscar_kernel
A = 1
N = 500
Z = np.random.normal(0, 1, N)
X = 4 * random(0.14123216, 15, N) - 2
x_sorted = sorted(X)
Q = 100


def m_function(a, x):
    return np.arctan(a * x)


def m_function_all(a, tab):
    output = []
    for i in range(len(tab)):
        output.append(m_function(a, tab[i]))
    return output


def system_output(x_tab, z_tab):
    output = []
    for x in range(len(x_tab)):
        output.append(m_function(A, x_tab[x]) + z_tab[x])
    return output


def valid(kernel_type, x_tab, y_tab, hv):
Esempio n. 8
0








if __name__ == "__main__":
    N = 200
    h = 1
    M = 100
    L = 10
    normal_tab = normal_generator(N)
    random_tab = random(0.13213421, 13, N)
    print(normal_generator(10))
    fig1, ax1 = plt.subplots(3)
    x1, y1 = kernel_estimator("rectangular", normal_tab, 0.4, N)
    ax1[0].plot(x1, y1)
    ax1[0].set_title('h = 0.4')
    x2, y2 = kernel_estimator("rectangular", normal_tab, 1, N)
    ax1[1].plot(x2, y2)
    ax1[1].set_title('h = 1')
    x3, y3 = kernel_estimator("rectangular", normal_tab, 4, N)
    ax1[2].plot(x3, y3)
    ax1[2].set_title('h = 4')
    fig2, ax2 = plt.subplots(3)
    x4, y4 = kernel_estimator("rectangular", normal_tab, h, N)
    ax2[0].plot(x4, y4)
    ax2[0].set_title('Rozkład normalny - jądro prostokątne')
Esempio n. 9
0
File: lab7.py Progetto: BPrepos/MiI
import numpy as np
import matplotlib.pyplot as plt
from labgotowe import random
from lab5 import rectangular_kernel, epanechnikov_kernel, boscar_kernel

A = 1
N = 250
L = 15
Q = 100
x_tab = 2 * np.pi * random(0.14123141, 15, N) - np.pi
x_sorted = sorted(x_tab)
z_tab = np.random.normal(0, 1, 500)


def m7_function(a, x):
    if 0 <= abs(x) < 1:
        tmp = a * pow(x, 2)
    elif 1 <= abs(x) < 2:
        tmp = 1
    else:
        tmp = 0
    return tmp


def m7_for_tab(a, tab):
    output = []
    for i in range(len(tab)):
        output.append(m7_function(a, tab[i]))
    return output