def search_space(): num_units_first_dense = UniformNumber(lower=950, upper=1450, default=1024, type=int, log_scale=True) num_units_second_dense = UniformNumber(lower=900, upper=1600, default=1024, type=int, log_scale=True) dropout_rate = UniformFloat(lower=.33, upper=.55, default=.45) lr = UniformFloat(lower=.003, upper=.007, default=.004) momentum = UniformFloat(lower=.4, upper=.93, default=.5)
def search_space(): batch_size = UniformInt(lower=8, upper=64, default=32, log_scale=True) num_units_first_layer = UniformInt(lower=16, upper=1024, default=32, log_scale=True) num_units_second_layer = UniformInt(lower=16, upper=1024, default=32, log_scale=True) dropout_first_layer = UniformFloat(lower=0, upper=.99, default=.2) dropout_second_layer = UniformFloat(lower=0, upper=.99, default=.2) learning_rate = UniformFloat(lower=10e-6, upper=10e-1, default=10e-2, log_scale=True)
def search_space(): lr = UniformFloat(0.0001, 0.01, default=0.001, log_scale=True) batch_size = UniformNumber(8, 256, default=100, type=int) n_hidden = UniformNumber(32, 256, default=32, type=int) keep_prob = UniformFloat(0.2, 1.0, default=0.5)
def search_space(): x = (UniformFloat(-5, 10), UniformFloat(0, 15))
def small_search_space(): batch_size = UniformInt(lower=32, upper=64, default=32, log_scale=True) learning_rate = UniformFloat(lower=10e-3, upper=10e-2, default=10e-2, log_scale=True)