Esempio n. 1
0
	def __init__(self, rankingstat, nsamples = 2**24, verbose = False):
		#
		# bailout used by .from_xml() class method to get an
		# uninitialized instance
		#

		if rankingstat is None:
			return

		#
		# initialize binnings
		#

		self.noise_lr_lnpdf = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-10., 30., 3000),)))
		self.signal_lr_lnpdf = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-10., 30., 3000),)))
		self.candidates_lr_lnpdf = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-10., 30., 3000),)))

		#
		# obtain analyzed segments that will be used to obtain livetime
		#

		self.segments = segmentsUtils.vote(rankingstat.denominator.triggerrates.segmentlistdict().values(),rankingstat.min_instruments)

		#
		# run importance-weighted random sampling to populate binnings.
		#

		self.signal_lr_lnpdf.array, self.noise_lr_lnpdf.array = binned_log_likelihood_ratio_rates_from_samples(
			self.signal_lr_lnpdf,
			self.noise_lr_lnpdf,
			rankingstat.ln_lr_samples(rankingstat.denominator.random_params(), rankingstat),
			nsamples = nsamples)

		if verbose:
			print("done computing ranking statistic PDFs", file=sys.stderr) 

		#
		# apply density estimation kernels to counts
		#

		self.density_estimate(self.noise_lr_lnpdf, "noise model")
		self.density_estimate(self.signal_lr_lnpdf, "signal model")

		#
		# set the total sample count in the noise and signal
		# ranking statistic histogram equal to the total expected
		# count of the respective events from the experiment. This
		# information is required so that when adding ranking
		# statistic PDFs in our .__iadd__() method they are
		# combined with the correct relative weights, so that
		# .__iadd__() has the effect of marginalizing the
		# distribution over the experients being combined.
		#

		self.noise_lr_lnpdf.array /= self.noise_lr_lnpdf.array.sum()
		self.noise_lr_lnpdf.normalize()
		self.signal_lr_lnpdf.array /= self.signal_lr_lnpdf.array.sum()
		self.signal_lr_lnpdf.normalize()
Esempio n. 2
0
	def __init__(self, instruments):
		self.densities = {}
		for instrument in instruments:
			self.densities["%s_snr2_chi2" % instrument] = rate.BinnedLnPDF(rate.NDBins((rate.ATanLogarithmicBins(10, 1e7, 801), rate.ATanLogarithmicBins(.1, 1e4, 801))))
		for pair in itertools.combinations(sorted(instruments), 2):
			dt = 0.005 + snglcoinc.light_travel_time(*pair)	# seconds
			self.densities["%s_%s_dt" % pair] = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-dt, +dt, 801),)))
			self.densities["%s_%s_dA" % pair] = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-0.5, +0.5, 801),)))
			self.densities["%s_%s_df" % pair] = rate.BinnedLnPDF(rate.NDBins((rate.ATanBins(-0.2, +0.2, 501),)))
		# only non-negative rss timing residual bins will be used
		# but we want a binning that's linear at the origin so
		# instead of inventing a new one we just use atan bins that
		# are symmetric about 0
		self.densities["instrumentgroup,rss_timing_residual"] = rate.BinnedLnPDF(rate.NDBins((InstrumentBins(names = instruments), rate.ATanBins(-0.02, +0.02, 1001))))
Esempio n. 3
0
	def __init__(self, instruments):
		self.densities = {}
		for pair in intertools.combinations(sorted(instruments), 2):
			# FIXME:  hard-coded for directional search
			#dt = 0.02 + snglcoinc.light_travel_time(*pair)
			dt = 0.02
			self.densities["%s_%s_dt" % pair] = rate.BinnedLnDPF(rate.NDBins((rate.ATanBins(-dt, +dt, 12001), rate.LinearBins(0.0, 2 * math.pi, 61))))
			self.densities["%s_%s_dband" % pair] = rate.BinnedLnDPF(rate.NDBins((rate.LinearBins(-2.0, +2.0, 12001), rate.LinearBins(0.0, 2 * math.pi, 61))))
			self.densities["%s_%s_ddur" % pair] = rate.BinnedLnDPF(rate.NDBins((rate.LinearBins(-2.0, +2.0, 12001), rate.LinearBins(0.0, 2 * math.pi, 61))))
			self.densities["%s_%s_df" % pair] = rate.BinnedLnDPF(rate.NDBins((rate.LinearBins(-2.0, +2.0, 12001), rate.LinearBins(0.0, 2 * math.pi, 61))))
			self.densities["%s_%s_dh" % pair] = rate.BinnedLnDPF(rate.NDBins((rate.LinearBins(-2.0, +2.0, 12001), rate.LinearBins(0.0, 2 * math.pi, 61))))
Esempio n. 4
0
    def __init__(self,
                 rankingstat,
                 signal_noise_pdfs=None,
                 nsamples=2**24,
                 nthreads=8,
                 verbose=False):
        #
        # bailout out used by .from_xml() class method to get an
        # uninitialized instance
        #

        if rankingstat is None:
            return

        #
        # initialize binnings
        #

        self.noise_lr_lnpdf = rate.BinnedLnPDF(
            rate.NDBins((rate.ATanBins(0., 110., 6000), )))
        self.signal_lr_lnpdf = rate.BinnedLnPDF(
            rate.NDBins((rate.ATanBins(0., 110., 6000), )))
        self.zero_lag_lr_lnpdf = rate.BinnedLnPDF(
            rate.NDBins((rate.ATanBins(0., 110., 6000), )))
        self.segments = segmentsUtils.vote(rankingstat.segmentlists.values(),
                                           rankingstat.min_instruments)
        if rankingstat.template_ids is None:
            raise ValueError(
                "cannot be initialized from a RankingStat that is not for a specific set of templates"
            )
        self.template_ids = rankingstat.template_ids

        #
        # bailout used by codes that want all-zeros histograms
        #

        if not nsamples:
            return

        #
        # run importance-weighted random sampling to populate
        # binnings.
        #

        if signal_noise_pdfs is None:
            signal_noise_pdfs = rankingstat

        nthreads = int(nthreads)
        assert nthreads >= 1
        threads = []
        for i in range(nthreads):
            assert nsamples // nthreads >= 1
            q = multiprocessing.SimpleQueue()
            p = multiprocessing.Process(
                target=lambda: self.
                binned_log_likelihood_ratio_rates_from_samples_wrapper(
                    q,
                    self.signal_lr_lnpdf,
                    self.noise_lr_lnpdf,
                    rankingstat.ln_lr_samples(
                        rankingstat.denominator.random_params(),
                        signal_noise_pdfs),
                    nsamples=nsamples // nthreads))
            p.start()
            threads.append((p, q))
            nsamples -= nsamples // nthreads
            nthreads -= 1
            # sleep a bit to help random number seeds change
            time.sleep(1.5)
        while threads:
            p, q = threads.pop(0)
            signal_counts, noise_counts = q.get()
            self.signal_lr_lnpdf.array += signal_counts
            self.noise_lr_lnpdf.array += noise_counts
            p.join()
            if p.exitcode:
                raise Exception("sampling thread failed")
        if verbose:
            print("done computing ranking statistic PDFs", file=sys.stderr)

        #
        # apply density estimation kernels to counts
        #

        self.density_estimate(self.noise_lr_lnpdf, "noise model")
        self.density_estimate(self.signal_lr_lnpdf, "signal model")

        #
        # set the total sample count in the noise and signal
        # ranking statistic histogram equal to the total expected
        # count of the respective events from the experiment.  this
        # information is required so that when adding ranking
        # statistic PDFs in our .__iadd__() method they are
        # combined with the correct relative weights, so that
        # .__iadd__() has the effect of marginalizing the
        # distribution over the experiments being combined.
        #

        self.noise_lr_lnpdf.array *= sum(
            rankingstat.denominator.candidate_count_model().values(
            )) / self.noise_lr_lnpdf.array.sum()
        self.noise_lr_lnpdf.normalize()
        self.signal_lr_lnpdf.array *= rankingstat.numerator.candidate_count_model(
        ) / self.signal_lr_lnpdf.array.sum()
        self.signal_lr_lnpdf.normalize()