Esempio n. 1
0
def make_calc_likelihood_fragment(dag,
                                  parents,
                                  likelihood_parents,
                                  tag,
                                  files_per_calc_likelihood=None,
                                  verbose=False):
    if files_per_calc_likelihood is None:
        files_per_calc_likelihood = calc_likelihoodjob.files_per_calc_likelihood
    input_cache = power.collect_output_caches(parents)
    likelihood_cache = power.collect_output_caches(likelihood_parents)
    nodes = set()
    while input_cache:
        node = CalcLikelihoodNode(calc_likelihoodjob)
        node.add_input_cache([
            cache_entry
            for cache_entry, parent in input_cache[:files_per_calc_likelihood]
        ])
        for parent in set(parent for cache_entry, parent in
                          input_cache[:files_per_calc_likelihood]):
            node.add_parent(parent)
        del input_cache[:files_per_calc_likelihood]
        seg = power.cache_span(node.get_input_cache())
        node.set_name("lalapps_string_calc_likelihood_%s_%d_%d" %
                      (tag, int(seg[0]), int(abs(seg))))
        for cache_entry, parent in likelihood_cache:
            node.add_parent(parent)
            node.add_likelihood_cache([cache_entry])
        dag.add_node(node)
        nodes.add(node)
    return nodes
Esempio n. 2
0
def make_meas_likelihood_fragment(dag,
                                  parents,
                                  tag,
                                  files_per_meas_likelihood=None):
    if files_per_meas_likelihood is None:
        files_per_meas_likelihood = meas_likelihoodjob.files_per_meas_likelihood
    nodes = set()
    input_cache = power.collect_output_caches(parents)
    while input_cache:
        node = MeasLikelihoodNode(meas_likelihoodjob)
        node.add_input_cache([
            cache_entry
            for cache_entry, parent in input_cache[:files_per_meas_likelihood]
        ])
        for parent in set(parent for cache_entry, parent in
                          input_cache[:files_per_meas_likelihood]):
            node.add_parent(parent)
        del input_cache[:files_per_meas_likelihood]
        seg = power.cache_span(node.get_input_cache())
        node.set_name("lalapps_string_meas_likelihood_%s_%d_%d" %
                      (tag, int(seg[0]), int(abs(seg))))
        node.set_output(tag)
        dag.add_node(node)
        nodes.add(node)
    return nodes
Esempio n. 3
0
def make_run_sqlite_fragment(dag,
                             parents,
                             tag,
                             sql_file,
                             files_per_run_sqlite=None):
    if files_per_run_sqlite is None:
        files_per_run_sqlite = runsqlitejob.files_per_run_sqlite
    nodes = set()
    input_cache = power.collect_output_caches(parents)
    while input_cache:
        node = RunSqliteNode(runsqlitejob)
        node.set_sql_file(sql_file)
        node.add_input_cache([
            cache_entry
            for cache_entry, parent in input_cache[:files_per_run_sqlite]
        ])
        for parent in set(
                parent
                for cache_entry, parent in input_cache[:files_per_run_sqlite]):
            node.add_parent(parent)
        del input_cache[:files_per_run_sqlite]
        seg = power.cache_span(node.get_output_cache())
        node.set_name("lalapps_run_sqlite_%s_%d_%d" %
                      (tag, int(seg[0]), int(abs(seg))))
        dag.add_node(node)
        nodes.add(node)
    return nodes
Esempio n. 4
0
def make_string_segment_fragment(dag,
                                 datafindnodes,
                                 instrument,
                                 seg,
                                 tag,
                                 min_segment_length,
                                 pad,
                                 overlap,
                                 short_segment_duration,
                                 max_job_length,
                                 binjnodes=set(),
                                 verbose=False):
    """
	Construct a DAG fragment for an entire segment, splitting the
	segment into multiple trigger generator jobs.
	"""
    # figure out which binj nodes, if any, produce output for this job
    binjnodes = set(
        node for node in binjnodes
        if power.cache_span(node.get_output_cache()).intersects(seg))

    # only one frame cache file can be provided as input, and only one
    # injection description file can be provided as input.
    # the unpacking indirectly tests that the file count is correct
    [framecache] = [node.get_output() for node in datafindnodes]
    if binjnodes:
        [simfile] = [
            cache_entry.path for node in binjnodes
            for cache_entry in node.get_output_cache()
        ]
        injargs = {"injection-file": simfile}
    else:
        injargs = {}
    seglist = split_segment(seg, min_segment_length, pad, overlap,
                            short_segment_duration, max_job_length)
    if verbose:
        print >> sys.stderr, "Segment split: " + str(seglist)
    nodes = set()
    for seg in seglist:
        nodes |= make_string_fragment(dag,
                                      datafindnodes | binjnodes,
                                      instrument,
                                      seg,
                                      tag,
                                      framecache,
                                      injargs=injargs)
    return nodes
Esempio n. 5
0
def make_meas_likelihood_fragment(dag, parents, tag, files_per_meas_likelihood = None):
	if files_per_meas_likelihood is None:
		files_per_meas_likelihood = meas_likelihoodjob.files_per_meas_likelihood
	nodes = set()
	input_cache = power.collect_output_caches(parents)
	while input_cache:
		node = MeasLikelihoodNode(meas_likelihoodjob)
		node.add_input_cache([cache_entry for cache_entry, parent in input_cache[:files_per_meas_likelihood]])
		for parent in set(parent for cache_entry, parent in input_cache[:files_per_meas_likelihood]):
			node.add_parent(parent)
		del input_cache[:files_per_meas_likelihood]
		seg = power.cache_span(node.get_input_cache())
		node.set_name("lalapps_string_meas_likelihood_%s_%d_%d" % (tag, int(seg[0]), int(abs(seg))))
		node.set_output(tag)
		dag.add_node(node)
		nodes.add(node)
	return nodes
Esempio n. 6
0
def make_run_sqlite_fragment(dag, parents, tag, sql_file, files_per_run_sqlite = None):
	if files_per_run_sqlite is None:
		files_per_run_sqlite = runsqlitejob.files_per_run_sqlite
	nodes = set()
	input_cache = power.collect_output_caches(parents)
	while input_cache:
		node = RunSqliteNode(runsqlitejob)
		node.set_sql_file(sql_file)
		node.add_input_cache([cache_entry for cache_entry, parent in input_cache[:files_per_run_sqlite]])
		for parent in set(parent for cache_entry, parent in input_cache[:files_per_run_sqlite]):
			node.add_parent(parent)
		del input_cache[:files_per_run_sqlite]
		seg = power.cache_span(node.get_output_cache())
		node.set_name("lalapps_run_sqlite_%s_%d_%d" % (tag, int(seg[0]), int(abs(seg))))
		dag.add_node(node)
		nodes.add(node)
	return nodes
Esempio n. 7
0
def make_calc_likelihood_fragment(dag, parents, likelihood_parents, tag, files_per_calc_likelihood = None, verbose = False):
  if files_per_calc_likelihood is None:
    files_per_calc_likelihood = calc_likelihoodjob.files_per_calc_likelihood
  input_cache = power.collect_output_caches(parents)
  likelihood_cache = power.collect_output_caches(likelihood_parents)
  nodes = set()
  while input_cache:
    node = CalcLikelihoodNode(calc_likelihoodjob)
    node.add_input_cache([cache_entry for cache_entry, parent in input_cache[:files_per_calc_likelihood]])
    for parent in set(parent for cache_entry, parent in input_cache[:files_per_calc_likelihood]):
      node.add_parent(parent)
    del input_cache[:files_per_calc_likelihood]
    seg = power.cache_span(node.get_input_cache())
    node.set_name("lalapps_string_calc_likelihood_%s_%d_%d" % (tag, int(seg[0]), int(abs(seg))))
    for cache_entry, parent in likelihood_cache:
      node.add_parent(parent)
      node.add_likelihood_cache([cache_entry])
    dag.add_node(node)
    nodes.add(node)
  return nodes
Esempio n. 8
0
def make_string_segment_fragment(dag, datafindnodes, instrument, seg, tag, min_segment_length, pad, overlap, short_segment_duration, max_job_length, binjnodes = set(), verbose = False):
	"""
	Construct a DAG fragment for an entire segment, splitting the
	segment into multiple trigger generator jobs.
	"""
	# figure out which binj nodes, if any, produce output for this job
	binjnodes = set(node for node in binjnodes if power.cache_span(node.get_output_cache()).intersects(seg))

	# only one frame cache file can be provided as input, and only one
	# injection description file can be provided as input.
	# the unpacking indirectly tests that the file count is correct
	[framecache] = [node.get_output() for node in datafindnodes]
	if binjnodes:
		[simfile] = [cache_entry.path for node in binjnodes for cache_entry in node.get_output_cache()]
		injargs = {"injection-file": simfile}
	else:
		injargs = {}
	seglist = split_segment(seg, min_segment_length, pad, overlap, short_segment_duration, max_job_length)
	if verbose:
		print("Segment split: " + str(seglist), file=sys.stderr)
	nodes = set()
	for seg in seglist:
		nodes |= make_string_fragment(dag, datafindnodes | binjnodes, instrument, seg, tag, framecache, injargs = injargs)
	return nodes
def make_coinc_branch(dag, datafinds, seglists, time_slides, min_segment_length, pad, overlap, short_segment_duration, tag, vetoes_cache = set(), do_injections = False, injections_offset = 0.0, verbose = False):
	#
	# injection job
	#

	binjnodes = set()
	if do_injections:
		# don't know what to do with more than one list of offset
		# vectors
		assert len(time_slides) == 1

		# get the largest injection offset's magnitude
		maxoffset = max(abs(offset) for offsetvectorlist in time_slides.values() for offsetvector in offsetvectorlist for offset in offsetvector.values())

		# to save disk space and speed the dag along we don't
		# generate a single injection list for the entire analysis
		# run, instead a separate list is constructed for each
		# block of data to be analyzed.  we need to be careful that
		# two nearby injection lists don't contain injections for
		# the same time, so we protract the segments by the time
		# step and coalesce so that only gaps between segments
		# larger than twice the time step result in separate files
		# being generated.  we could allow smaller gaps to survive,
		# but this way we don't have to worry about it.

		# injections_offset is a number between 0 and 1 in units of
		# the period between injections

		for seg in seglists.union(seglists).protract(power.binjjob.time_step + maxoffset).coalesce().contract(power.binjjob.time_step + maxoffset):
			binjnodes |= power.make_binj_fragment(dag, seg.protract(maxoffset), time_slides.keys()[0], tag, offset = injections_offset)

		# artificial parent-child relationship to induce dagman to
		# submit binj jobs as the corresponding datafinds complete
		# instead of submiting all of one kind before any of the next.
		# makes dag run faster because it allows string search jobs to
		# start moving onto the cluster without waiting for all the
		# datafinds and/or all the binjs to complete

		for datafindnode in datafinds:
			seg = segments.segment(datafindnode.get_start(), datafindnode.get_end())
			for binjnode in binjnodes:
				if seg.intersects(power.cache_span(binjnode.get_output_cache())):
					binjnode.add_parent(datafindnode)

	#
	# trigger generator jobs
	#

	# set max job length to ~3600 s (will be clipped to an allowed
	# size)
	trigger_nodes = cosmicstring.make_single_instrument_stage(dag, datafinds, seglists, tag, min_segment_length, pad, overlap, short_segment_duration, max_job_length = 3600, binjnodes = binjnodes, verbose = verbose)

	#
	# coincidence analysis
	#

	coinc_nodes = []
	for n, (time_slides_cache_entry, these_time_slides) in enumerate(time_slides.items()):
		if verbose:
			print >>sys.stderr, "%s %d/%d (%s):" % (tag, n + 1, len(time_slides), time_slides_cache_entry.path)
		coinc_nodes.append(set())

		#
		# lalapps_cafe & ligolw_add
		#

		tisi_cache = set([time_slides_cache_entry])
		lladd_nodes = set()
		for seg, parents, cache, clipseg in power.group_coinc_parents(trigger_nodes, these_time_slides, extentlimit = 50000000.0 / (len(these_time_slides) or 1), verbose = verbose):
			binj_cache = set(cache_entry for node in binjnodes for cache_entry in node.get_output_cache() if cache_entry.segment.intersects(seg))
			# otherwise too many copies of the offset vector
			# will be fed into burca
			assert len(binj_cache) < 2
			if do_injections:
				# lalapps_binj has already copied the time
				# slide document into its own output
				extra_input_cache = vetoes_cache
			else:
				# ligolw_add needs to copy the time slide
				# document into its output
				extra_input_cache = tisi_cache | vetoes_cache
			these_lladd_nodes = power.make_lladd_fragment(dag, parents | binjnodes, "%s_%d" % (tag, n), segment = seg, input_cache = cache | binj_cache, extra_input_cache = extra_input_cache, remove_input = do_injections and clipseg is not None, preserve_cache = binj_cache | tisi_cache | vetoes_cache)
			if clipseg is not None:
				#
				# this is a fragment of a too-large burca
				# job, construct it specially and add the
				# command-line option needed to clip the
				# output
				#

				assert len(these_lladd_nodes) == 1
				coinc_nodes[-1] |= power.make_burca_fragment(dag, these_lladd_nodes, "%s_%d" % (tag, n), coincidence_segments = segments.segmentlist([clipseg]), verbose = verbose)

			else:
				#
				# this is not a fragment of a too-large
				# burca job, add it to the pool of files to
				# be processed by the burcas that don't
				# require special clipping command line
				# options
				#

				lladd_nodes |= these_lladd_nodes

		#
		# lalapps_burca pool.  these are the burca jobs that don't
		# require special clipping command line options, and so can
		# bulk-process many files with each job
		#

		if verbose:
			print >>sys.stderr, "building burca jobs ..."
		coinc_nodes[-1] |= power.make_burca_fragment(dag, lladd_nodes, "%s_%d" % (tag, n), verbose = verbose)
		if verbose:
			print >>sys.stderr, "done %s %d/%d" % (tag, n + 1, len(time_slides))

	#
	# lalapps_binjfind
	#

	if do_injections:
		if verbose:
			print >>sys.stderr, "building binjfind jobs ..."
		coinc_nodes = [power.make_binjfind_fragment(dag, these_coinc_nodes, "%s_%d" % (tag, n), verbose = verbose) for n, these_coinc_nodes in enumerate(coinc_nodes)]

	#
	# ligolw_sqlite and lalapps_run_sqlite
	#

	if verbose:
		print >>sys.stderr, "building sqlite jobs ..."
	coinc_nodes = [power.make_sqlite_fragment(dag, these_coinc_nodes, "%s_%d" % (tag, n), verbose = verbose) for n, these_coinc_nodes in enumerate(coinc_nodes)]
	coinc_nodes = [cosmicstring.make_run_sqlite_fragment(dag, these_coinc_nodes, "%s_%d" % (tag, n), clipsegments_sql_filename) for n, these_coinc_nodes in enumerate(coinc_nodes)]

	#
	# lalapps_string_meas_likelihood
	#

	if verbose:
		print >>sys.stderr, "building lalapps_string_meas_likelihood jobs ..."
	likelihood_nodes = [cosmicstring.make_meas_likelihood_fragment(dag, these_coinc_nodes, "%s_%d" % (tag, n)) for n, these_coinc_nodes in enumerate(coinc_nodes)]

	#
	# write output cache
	#

	if verbose:
		print >>sys.stderr, "writing output cache ..."
	for n, (these_coinc_nodes, these_likelihood_nodes) in enumerate(zip(coinc_nodes, likelihood_nodes)):
		power.write_output_cache(these_coinc_nodes | these_likelihood_nodes, "%s_%s_output.cache" % (os.path.splitext(dag.get_dag_file())[0], "%s_%d" % (tag, n)))

	#
	# done
	#

	return coinc_nodes, likelihood_nodes
Esempio n. 10
0
def make_coinc_branch(dag,
                      datafinds,
                      seglists,
                      time_slides,
                      min_segment_length,
                      pad,
                      overlap,
                      short_segment_duration,
                      tag,
                      vetoes_cache=set(),
                      do_injections=False,
                      injections_offset=0.0,
                      verbose=False):
    #
    # injection job
    #

    binjnodes = set()
    if do_injections:
        # don't know what to do with more than one list of offset
        # vectors
        assert len(time_slides) == 1

        # get the largest injection offset's magnitude
        maxoffset = max(
            abs(offset) for offsetvectorlist in time_slides.values()
            for offsetvector in offsetvectorlist
            for offset in offsetvector.values())

        # to save disk space and speed the dag along we don't
        # generate a single injection list for the entire analysis
        # run, instead a separate list is constructed for each
        # block of data to be analyzed.  we need to be careful that
        # two nearby injection lists don't contain injections for
        # the same time, so we protract the segments by the time
        # step and coalesce so that only gaps between segments
        # larger than twice the time step result in separate files
        # being generated.  we could allow smaller gaps to survive,
        # but this way we don't have to worry about it.

        # injections_offset is a number between 0 and 1 in units of
        # the period between injections

        for seg in seglists.union(seglists).protract(
                power.binjjob.time_step +
                maxoffset).coalesce().contract(power.binjjob.time_step +
                                               maxoffset):
            binjnodes |= power.make_binj_fragment(dag,
                                                  seg.protract(maxoffset),
                                                  time_slides.keys()[0],
                                                  tag,
                                                  offset=injections_offset)

        # artificial parent-child relationship to induce dagman to
        # submit binj jobs as the corresponding datafinds complete
        # instead of submiting all of one kind before any of the next.
        # makes dag run faster because it allows string search jobs to
        # start moving onto the cluster without waiting for all the
        # datafinds and/or all the binjs to complete

        for datafindnode in datafinds:
            seg = segments.segment(datafindnode.get_start(),
                                   datafindnode.get_end())
            for binjnode in binjnodes:
                if seg.intersects(power.cache_span(
                        binjnode.get_output_cache())):
                    binjnode.add_parent(datafindnode)

    #
    # trigger generator jobs
    #

    # set max job length to ~3600 s (will be clipped to an allowed
    # size)
    trigger_nodes = cosmicstring.make_single_instrument_stage(
        dag,
        datafinds,
        seglists,
        tag,
        min_segment_length,
        pad,
        overlap,
        short_segment_duration,
        max_job_length=3600,
        binjnodes=binjnodes,
        verbose=verbose)

    #
    # coincidence analysis
    #

    coinc_nodes = []
    for n, (time_slides_cache_entry,
            these_time_slides) in enumerate(time_slides.items()):
        if verbose:
            print("%s %d/%d (%s):" %
                  (tag, n + 1, len(time_slides), time_slides_cache_entry.path),
                  file=sys.stderr)
        coinc_nodes.append(set())

        #
        # lalapps_cafe & ligolw_add
        #

        tisi_cache = set([time_slides_cache_entry])
        lladd_nodes = set()
        for segnum, (seg, parents, cache, clipseg) in enumerate(
                power.group_coinc_parents(trigger_nodes,
                                          these_time_slides,
                                          extentlimit=150000000.0 /
                                          (len(these_time_slides) or 1),
                                          verbose=verbose)):
            binj_cache = set(cache_entry for node in binjnodes
                             for cache_entry in node.get_output_cache()
                             if cache_entry.segment.intersects(seg))
            # otherwise too many copies of the offset vector
            # will be fed into burca
            assert len(binj_cache) < 2
            if do_injections:
                # lalapps_binj has already copied the time
                # slide document into its own output
                extra_input_cache = vetoes_cache
            else:
                # ligolw_add needs to copy the time slide
                # document into its output
                extra_input_cache = tisi_cache | vetoes_cache
            these_lladd_nodes = power.make_lladd_fragment(
                dag,
                parents | binjnodes,
                "%s_%d_%x" % (tag, n, segnum),
                segment=seg,
                input_cache=cache | binj_cache | segments_cache,
                extra_input_cache=extra_input_cache,
                remove_input=do_injections and clipseg is not None,
                preserve_cache=binj_cache | segments_cache | tisi_cache
                | vetoes_cache)
            if clipseg is not None:
                #
                # this is a fragment of a too-large burca
                # job, construct it specially and add the
                # command-line option needed to clip the
                # output
                #

                assert len(these_lladd_nodes) == 1
                coinc_nodes[-1] |= power.make_burca_fragment(
                    dag,
                    these_lladd_nodes,
                    "%s_%d" % (tag, n),
                    coincidence_segments=segments.segmentlist([clipseg]),
                    verbose=verbose)

            else:
                #
                # this is not a fragment of a too-large
                # burca job, add it to the pool of files to
                # be processed by the burcas that don't
                # require special clipping command line
                # options
                #

                lladd_nodes |= these_lladd_nodes

        #
        # lalapps_burca pool.  these are the burca jobs that don't
        # require special clipping command line options, and so can
        # bulk-process many files with each job
        #

        if verbose:
            print("building burca jobs ...", file=sys.stderr)
        coinc_nodes[-1] |= power.make_burca_fragment(dag,
                                                     lladd_nodes,
                                                     "%s_%d" % (tag, n),
                                                     verbose=verbose)
        if verbose:
            print("done %s %d/%d" % (tag, n + 1, len(time_slides)),
                  file=sys.stderr)

    #
    # lalapps_binjfind
    #

    if do_injections:
        if verbose:
            print("building binjfind jobs ...", file=sys.stderr)
        coinc_nodes = [
            power.make_binjfind_fragment(dag,
                                         these_coinc_nodes,
                                         "%s_%d" % (tag, n),
                                         verbose=verbose)
            for n, these_coinc_nodes in enumerate(coinc_nodes)
        ]

    #
    # ligolw_sqlite and lalapps_run_sqlite
    #

    if verbose:
        print("building sqlite jobs ...", file=sys.stderr)
    coinc_nodes = [
        power.make_sqlite_fragment(dag,
                                   these_coinc_nodes,
                                   "%s_%d" % (tag, n),
                                   verbose=verbose)
        for n, these_coinc_nodes in enumerate(coinc_nodes)
    ]
    coinc_nodes = [
        cosmicstring.make_run_sqlite_fragment(dag, these_coinc_nodes,
                                              "%s_%d" % (tag, n),
                                              clipsegments_sql_filename)
        for n, these_coinc_nodes in enumerate(coinc_nodes)
    ]

    #
    # lalapps_string_meas_likelihood
    #

    if verbose:
        print("building lalapps_string_meas_likelihood jobs ...",
              file=sys.stderr)
    likelihood_nodes = [
        cosmicstring.make_meas_likelihood_fragment(dag, these_coinc_nodes,
                                                   "%s_%d" % (tag, n))
        for n, these_coinc_nodes in enumerate(coinc_nodes)
    ]

    #
    # write output cache
    #

    if verbose:
        print("writing output cache ...", file=sys.stderr)
    for n, (these_coinc_nodes, these_likelihood_nodes) in enumerate(
            zip(coinc_nodes, likelihood_nodes)):
        power.write_output_cache(
            these_coinc_nodes | these_likelihood_nodes, "%s_%s_output.cache" %
            (os.path.splitext(dag.get_dag_file())[0], "%s_%d" % (tag, n)))

    #
    # done
    #

    return coinc_nodes, likelihood_nodes
Esempio n. 11
0
def thinca_coinc(ifo_list, single_data_analyzed, cafe_caches, cafe_base,
    lladd_job, tisi_file_name, lladd_veto_file, 
    coinc_job, dag, do_coinc, do_insp, usertag=None, inspinjNode=None):
  """
  Run thinca on the coincident times from each of the sets of IFOs. 
  Since the way we treat all this data is the same, this function is the same 
  for all. 

  ifo_list = a list of the ifos we are to analyze
  single_data_analyzed = dictionary of single ifo data analyzed
  cafe_caches = the caches from ligolw_cafe.ligolw_cafe()
  cafe_base = the base name for the cafe caches
  lladd_job = the condor job to do ligolw_add
  tisi_file_name = the name of the tisi file to add
  lladd_veto_file = the name of the veto file to add or None
  coinc_job = the condor job to do thinca
  dag = the DAG to attach the nodes to
  do_coinc = whether we should add the thinca jobs to the dag
  do_insp  = whether previous inspiral jobs are in the dag
  usertag = the usertag to add to the output file name
  inspinjNode = the inspinj node to be added as a parent to ligolw_add jobs
  """

  # create caches using ligolw_cafe
  cache_names = ligolw_cafe.write_caches(cafe_base, cafe_caches, set(ifo_list))
  coinc_analyzed = []

  # loop over caches
  for idx in range(len(cafe_caches)):
    if len(cafe_caches[idx].objects):
      cache = cafe_caches[idx]
      cachename = cache_names[idx]
      thincabase = cafe_base.split('.')[0].replace('CAFE_','')
      ifos = set(cache_entry.observatory for cache_entry in cache.objects)

      # extract segment information
      seg = power.cache_span(cache.objects)
      seg = pipeline.AnalysisChunk(seg[0],seg[1])

      # create node for ligolw_add to create xml file
      lladd = pipeline.LigolwAddNode(lladd_job)
      
      # add the tisi and veto files
      lladd.add_file_arg(tisi_file_name)
      if lladd_veto_file:
        lladd.add_file_arg(lladd_veto_file)

      # add the input xml files from the cafe cache
      cachefp = open(cachename,'r')
      cacheobject = lal.Cache().fromfile(cachefp)
      cachefp.close()
      cachepfns = cacheobject.pfnlist()
      for pfn in cachepfns:
        lladd.add_file_arg(pfn)

      # create node for ligolw_thinca to analyze xml file
      thinca = inspiral.ThincaNode(coinc_job)
      thinca.set_start(seg.start(), pass_to_command_line=False)
      thinca.set_end(seg.end(), pass_to_command_line=False)
      thinca.set_zip_output(True)
      if usertag: thinca.set_user_tag(thincabase, pass_to_command_line=False)

      # check if caches are adjacent
      coinc_end_time_segment = ''
      if idx and (cache.extent[0] == cafe_caches[idx-1].extent[1]):
        coinc_end_time_segment += str(cache.extent[0])
      coinc_end_time_segment += ':'
      if idx + 1 - len(cafe_caches) and (cache.extent[1] == cafe_caches[idx+1].extent[0]):
        coinc_end_time_segment += str(cache.extent[1])
      thinca.add_var_opt('coinc-end-time-segment',coinc_end_time_segment)

      # scroll through ifos, adding the appropriate ones
      for ifo in ifo_list:
        if ifo in ifos:
          thinca.set_ifo(ifo, pass_to_command_line=False)
                
      # add all inspiral jobs in this cache to input
      if do_insp:
        for cache_entry in cache.objects:
          lladd.add_parent(single_data_analyzed[cache_entry])

      # add inspinj job as parent of each ligolw_add job
      if inspinjNode and opts.inspinj: lladd.add_parent(inspinjNode)

      # set output of ligolw_add jobs to follow thinca's convention
      lladd_outfile = re.sub('THINCA','LLWADD',thinca.get_output())
      lladd.set_output(lladd_outfile)
      thinca.set_input(lladd.get_output(), pass_to_command_line=False)
      thinca.add_file_arg(lladd.get_output())

      # check for condor settings
      if not opts.disable_dag_categories:
        lladd.set_category('ligolw_add')
        thinca.set_category('thinca')
      if not opts.disable_dag_priorities:
        lladd.set_priority(3)
        thinca.set_priority(3)

      # add ligolw_add and ligolw_thinca nodes to dag
      if do_coinc:
        dag.add_node(lladd)
        thinca.add_parent(lladd)
        dag.add_node(thinca)

      # add ligolw_thinca coincident segment
      coinc_analyzed.append(AnalyzedIFOData(seg,thinca))

  return coinc_analyzed