import numpy as np import os import matplotlib.pyplot as plt import lamost import utils catalog = lamost.load_catalog() wavelengths = lamost.common_wavelengths N, P = (len(catalog), wavelengths.size) # Open the data arrays all_observed_flux = np.memmap( os.path.join(lamost.LAMOST_PATH, "observed_flux.memmap"), mode="r", dtype='float32', shape=(N, P)) all_observed_ivar = np.memmap( os.path.join(lamost.LAMOST_PATH, "observed_ivar.memmap"), mode="r", dtype='float32', shape=(N, P)) all_model_flux = np.memmap( os.path.join(lamost.LAMOST_PATH, "model_flux.memmap"), mode="r", dtype="float32", shape=(N, P)) # Plot a special star. star_index = 93 observed_flux = all_observed_flux[star_index] observed_ivar = all_observed_ivar[star_index]
from astropy.io import fits from astropy.table import Table from scipy import (interpolate, optimize as op) import logging from vectorizer import polynomial plt.close("all") star_index = 245603 mg1, mg2 = 5160, 5190 catalog =lamost.load_catalog() catalogbig = lamost.load_catalog('Ho2017_Catalog.fits') wavelengths = lamost.common_wavelengths N, P = (len(catalog), wavelengths.size) all_observed_flux = np.memmap( os.path.join(lamost.LAMOST_PATH, "observed_flux.memmap"), mode="r", dtype='float32', shape=(N, P)) all_observed_ivar = np.memmap( os.path.join(lamost.LAMOST_PATH, "observed_ivar.memmap"), mode="r", dtype='float32', shape=(N, P)) all_model_flux = np.memmap( os.path.join(lamost.LAMOST_PATH, "model_flux.memmap"),