Esempio n. 1
0
    def init_lanenet(self):
        '''
        initlize the tensorflow model
        '''
        self.input_tensor = tf.placeholder(dtype=tf.float32,
                                           shape=[1, 256, 512, 3],
                                           name='input_tensor')
        phase_tensor = tf.constant('test', tf.string)
        net = lanenet.LaneNet(phase=phase_tensor, net_flag='vgg')
        self.binary_seg_ret, self.instance_seg_ret = net.inference(
            input_tensor=self.input_tensor, name='lanenet_model')

        # self.cluster = lanenet_cluster.LaneNetCluster()
        self.postprocessor = lanenet_postprocess.LaneNetPostProcessor()

        saver = tf.train.Saver()
        # Set sess configuration
        if self.use_gpu:
            sess_config = tf.ConfigProto(device_count={'GPU': 1})
        else:
            sess_config = tf.ConfigProto(device_count={'CPU': 0})
        sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
        sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
        sess_config.gpu_options.allocator_type = 'BFC'

        self.sess = tf.Session(config=sess_config)
        saver.restore(sess=self.sess, save_path=self.weight_path)
        rospy.loginfo("Done Initializing")
Esempio n. 2
0
    def __init__(self, weights, config):
        """ Initializes a LanePredictor which is used to register a callback
        for the RGB images and predict lanes.

        Args:
            weights: The path of the weights to be used in the prediction.
            config: The config to be used for tensorflow.
        """
        self.input_tensor = tf.placeholder(dtype=tf.float32,
                                           shape=[1, 256, 512, 3],
                                           name='input_tensor')
        self.net = lanenet.LaneNet(phase='test', net_flag='vgg')
        self.binary_seg_ret, self.instance_seg_ret = self.net.inference(
            input_tensor=self.input_tensor, name='lanenet_model')

        self.postprocessor = lanenet_postprocess.LaneNetPostProcessor(
            ipm_remap_file_path=
            './dependencies/lanenet-lane-detection/data/tusimple_ipm_remap.yml'
        )
        sess_config = tf.ConfigProto()
        sess_config.gpu_options.per_process_gpu_memory_fraction = \
            config.TEST.GPU_MEMORY_FRACTION
        sess_config.gpu_options.allow_growth = config.TRAIN.TF_ALLOW_GROWTH
        sess_config.gpu_options.allocator_type = 'BFC'
        self.sess = tf.Session(config=sess_config).__enter__()
        saver = tf.train.Saver()
        saver.restore(sess=self.sess, save_path=weights)
Esempio n. 3
0
    def __init__(self, camera_stream, detected_lanes_stream, flags):
        camera_stream.add_callback(self.on_camera_frame,
                                   [detected_lanes_stream])
        self._flags = flags
        self._logger = erdos.utils.setup_logging(self.config.name,
                                                 self.config.log_file_name)
        pylot.utils.set_tf_loglevel(logging.ERROR)
        self._input_tensor = tf.placeholder(dtype=tf.float32,
                                            shape=[1, 256, 512, 3],
                                            name='input_tensor')
        net = lanenet.LaneNet(phase='test')
        self._binary_seg_ret, self._instance_seg_ret = net.inference(
            input_tensor=self._input_tensor, name='LaneNet')
        self._gpu_options = tf.GPUOptions(
            allow_growth=True,
            visible_device_list=str(self._flags.lane_detection_gpu_index),
            per_process_gpu_memory_fraction=flags.
            lane_detection_gpu_memory_fraction,
            allocator_type='BFC')
        self._tf_session = tf.Session(config=tf.ConfigProto(
            gpu_options=self._gpu_options, allow_soft_placement=True))
        with tf.variable_scope(name_or_scope='moving_avg'):
            variable_averages = tf.train.ExponentialMovingAverage(0.9995)
            variables_to_restore = variable_averages.variables_to_restore()

        self._postprocessor = lanenet_postprocess.LaneNetPostProcessor()
        saver = tf.train.Saver(variables_to_restore)
        with self._tf_session.as_default():
            saver.restore(sess=self._tf_session,
                          save_path=flags.lanenet_detection_model_path)
Esempio n. 4
0
def _test_lanenet(image_path, weights_path):
    """

    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(image_path), '{:s} not exist'.format(image_path)

    log.info('Start reading image and preprocessing')
    t_start = time.time()
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image_vis = image
    image = cv2.resize(image, (CFG.TRAIN.IMG_WIDTH, CFG.TRAIN.IMG_HEIGHT),
                       interpolation=cv2.INTER_LINEAR)
    image = image / 127.5 - 1.0
    log.info('Image load complete, cost time: {:.5f}s'.format(time.time() -
                                                              t_start))

    input_tensor = tf.placeholder(
        dtype=tf.float32,
        shape=[1, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 3],
        name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model',
                                                     return_score=True)

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():
        model_file = tf.train.latest_checkpoint(weights_path)
        saver.restore(sess=sess, save_path=model_file)

        t_start = time.time()
        binary_seg_image, instance_seg_image = sess.run(
            [binary_seg_ret, instance_seg_ret],
            feed_dict={input_tensor: [image]})
        t_cost = time.time() - t_start
        log.info('Single imgae inference cost time: {:.5f}s'.format(t_cost))
        plt.figure('src_image')
        plt.imshow(image_vis[:, :, (2, 1, 0)])
        plt.axis('off')
        plt.figure('binary_image')
        plt.imshow(binary_seg_image[0, :, :, 1] * 255, cmap='gray')
        plt.axis('off')
        plt.show()

    sess.close()

    return
Esempio n. 5
0
def generate_on_jiqing(src_path, pred_path, weights_path):
    image_list = get_all_files(src_path)
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')
    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')

    saver = tf.train.Saver()
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'  # best fit with coalescing  内存管理算法
    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)
        for index, image_path in tqdm.tqdm(enumerate(image_list),
                                           total=len(image_list)):
            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            image_vis = image
            image = image[540:840]
            image = cv2.resize(image, (512, 256),
                               interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0  # 归一化 (只归一未改变维数)
            postprocessor = lanenet_postprocess.LaneNetPostProcessor_noremap()

            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})

            postprocess_result = postprocessor.postprocess_noremap(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis,
                data_source='jiqing')

            # binary = lanenet_postprocess._morphological_process(binary_seg_image[0])
            mask = postprocess_result['mask_image']

            # binary = lanenet_postprocess._morphological_process(mask[0])
            binary = cv2.resize(mask, (1920, 300),
                                interpolation=cv2.INTER_LINEAR)
            back = np.zeros(shape=(1080, 1920, 3), dtype=np.uint8)
            for i in range(1920):
                for j in range(300):
                    # back[j+540, i] = binary[j, i]
                    back[j + 540, i, 0] = binary[j, i, 0]
                    back[j + 540, i, 1] = binary[j, i, 1]
                    back[j + 540, i, 2] = binary[j, i, 2]
            dst_image_path = ops.join(pred_path, image_path.split('/')[-2])
            if not ops.exists(dst_image_path):
                os.makedirs(dst_image_path)
            dst_image_path = ops.join(dst_image_path,
                                      image_path.split('/')[-1])

            cv2.imwrite(dst_image_path, back)
    return
Esempio n. 6
0
def graph_setting():
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')
    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')
    postprocessor = lanenet_postprocess.LaneNetPostProcessor()
Esempio n. 7
0
def plot_auc(txt_file, weights_path):

    input_tensor = tf.placeholder(
        dtype=tf.float32,
        shape=[1, CFG.TRAIN.IMG_HEIGHT, CFG.TRAIN.IMG_WIDTH, 3],
        name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model',
                                                     return_score=True)

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():
        model_file = tf.train.latest_checkpoint(weights_path)
        saver.restore(sess=sess, save_path=model_file)
        gts, preds = [], []
        with open(txt_file, 'r') as f:
            lines = f.readlines()
            for line in lines:
                image_path, gt_path, _ = line.strip().split()
                log.info('Processing {}.'.format(image_path))
                image = cv2.imread(image_path, cv2.IMREAD_COLOR)
                image = cv2.resize(image,
                                   (CFG.TRAIN.IMG_WIDTH, CFG.TRAIN.IMG_HEIGHT),
                                   interpolation=cv2.INTER_LINEAR)
                image = image / 127.5 - 1.0
                seg_image_gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE)
                seg_image_gt = cv2.resize(
                    seg_image_gt, (CFG.TRAIN.IMG_WIDTH, CFG.TRAIN.IMG_HEIGHT),
                    interpolation=cv2.INTER_LINEAR)
                seg_image_score = sess.run([binary_seg_ret],
                                           feed_dict={input_tensor: [image]})
                seg_image_score = seg_image_score[0][0, :, :, 1]
                gts.append((seg_image_gt > 0))
                preds.append(seg_image_score)
    sess.close()

    gt = np.array(gts)
    pred = np.array(preds)
    fpr, tpr, _ = roc_curve(gt.flatten(), pred.flatten())
    plt.title('ROC')
    plt.plot(fpr, tpr)
    plt.xlabel('fp')
    plt.ylabel('tp')
    plt.savefig('./tboard/roc_{}.png'.format(txt_file.split('/')[-1][:-4]))

    return
def convert_ckpt_into_pb_file(ckpt_file_path, pb_file_path):
    """

    :param ckpt_file_path:
    :param pb_file_path:
    :return:
    """
    # construct compute graph
    with tf.compat.v1.variable_scope('lanenet'):
        input_tensor = tf.placeholder(dtype=tf.float32,
                                      shape=[1, 256, 512, 3],
                                      name='input_tensor')

    net = lanenet.LaneNet(phase='test', cfg=CFG)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='LaneNet')

    with tf.compat.v1.variable_scope('lanenet/'):
        binary_seg_ret = tf.cast(binary_seg_ret, dtype=tf.float32)
        binary_seg_ret = tf.squeeze(binary_seg_ret,
                                    axis=0,
                                    name='final_binary_output')
        instance_seg_ret = tf.squeeze(instance_seg_ret,
                                      axis=0,
                                      name='final_pixel_embedding_output')

    # define moving average version of the learned variables for eval
    with tf.compat.v1.variable_scope(name_or_scope='moving_avg'):
        variable_averages = tf.train.ExponentialMovingAverage(
            CFG.SOLVER.MOVING_AVE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()

    # create a session
    saver = tf.train.Saver(variables_to_restore)

    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.85
    sess_config.gpu_options.allow_growth = False
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess, ckpt_file_path)

        converted_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            input_graph_def=sess.graph.as_graph_def(),
            output_node_names=[
                'lanenet/input_tensor', 'lanenet/final_binary_output',
                'lanenet/final_pixel_embedding_output'
            ])

        with tf.gfile.GFile(pb_file_path, "wb") as f:
            f.write(converted_graph_def.SerializeToString())
Esempio n. 9
0
def generate(src_path, pred_path, weights_path):
    image_list = get_all_files(src_path)
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')
    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')
    postprocessor = lanenet_postprocess.LaneNetPostProcessor_noremap()

    saver = tf.train.Saver()
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'  # best fit with coalescing  内存管理算法
    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)
        for image_path in image_list:
            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            image_vis = image
            # image = image[:][300:850]
            # image = cv2.resize(image, (1920, 1280), interpolation=cv2.INTER_LINEAR)
            image = cv2.resize(image, (512, 256),
                               interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0  # 归一化 (只归一未改变维数)

            t_strat = time.time()
            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})

            t_inference = time.time() - t_strat

            postprocess_result = postprocessor.postprocess_noremap(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis,
                data_source='caltech')
            t_cost = time.time() - t_strat
            print(t_inference, t_cost)

            dst_image_path = ops.join(pred_path, image_path.split('/')[-2])
            if not ops.exists(dst_image_path):
                os.makedirs(dst_image_path)
            dst_image_path = ops.join(dst_image_path,
                                      image_path.split('/')[-1])

            cv2.imwrite(dst_image_path,
                        image_vis)  # postprocess_result['mask_image'])

    return
Esempio n. 10
0
def generate_tusimple_sample(scr_path, pred_path, weights_path):
    listOfFiles = list()
    for (dirpath, dirnames, filenames) in os.walk(scr_path):
        listOfFiles += [os.path.join(dirpath, file) for file in filenames]
    print(listOfFiles)

    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')
    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')
    postprocessor = lanenet_postprocess.LaneNetPostProcessor_noremap()

    saver = tf.train.Saver()
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'  # best fit with coalescing  内存管理算法
    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)
        for index, image_path in tqdm.tqdm(enumerate(listOfFiles),
                                           total=len(listOfFiles)):
            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            image_vis = image
            image = cv2.resize(image, (512, 256),
                               interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0  # 归一化 (只归一未改变维数)

            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})

            postprocess_result = postprocessor.postprocess_noremap(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis,
            )

            dst_image_path = ops.join(pred_path, image_path.split('/')[-2])
            if not ops.exists(dst_image_path):
                os.makedirs(dst_image_path)
            dst_image_path = ops.join(dst_image_path,
                                      image_path.split('/')[-1])

            cv2.imwrite(dst_image_path, image_vis)

    return
def convert_ckpt_into_pb_file(ckpt_file_path, pb_file_path):
    """

    :param ckpt_file_path:
    :param pb_file_path:
    :return:
    """
    # construct compute graph
    with tf.variable_scope('lanenet'):
        input_tensor = tf.placeholder(dtype=tf.float32,
                                      shape=[1, 256, 512, 3],
                                      name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')

    with tf.variable_scope('lanenet/'):
        binary_seg_ret = tf.cast(binary_seg_ret, dtype=tf.float32)
        binary_seg_ret = tf.squeeze(binary_seg_ret,
                                    axis=0,
                                    name='final_binary_output')
        instance_seg_ret = tf.squeeze(instance_seg_ret,
                                      axis=0,
                                      name='final_pixel_embedding_output')

    # create a session
    saver = tf.train.Saver()

    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.85
    sess_config.gpu_options.allow_growth = False
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess, ckpt_file_path)

        converted_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            input_graph_def=sess.graph.as_graph_def(),
            output_node_names=[
                'lanenet/input_tensor', 'lanenet/final_binary_output',
                'lanenet/final_pixel_embedding_output'
            ])

        with tf.gfile.GFile(pb_file_path, "wb") as f:
            f.write(converted_graph_def.SerializeToString())
Esempio n. 12
0
def optimize_model(model_path):
    inputGraph = tf.GraphDef()
    with tf.gfile.Open(model_path, 'rb') as model:
        data2read = model.read()
        inputGraph.ParseFromString(data2read)

    with tf.variable_scope('lanenet'):
        input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 256, 512, 3], name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor, name='lanenet_model')

    with tf.variable_scope('lanenet/'):
        binary_seg_ret = tf.cast(binary_seg_ret, dtype=tf.float32)
        binary_seg_ret = tf.identity(binary_seg_ret, name= 'final_binary_output')
        instance_seg_ret = tf.identity(instance_seg_ret, name='final_pixel_embedding_output')
        # binary_seg_ret = tf.squeeze(binary_seg_ret, axis=0, name='final_binary_output')  # 删除所有大小是 1 的维度
        # instance_seg_ret = tf.squeeze(instance_seg_ret, axis=0, name='final_pixel_embedding_output')


    """outputGraph = optimize_for_inference_lib.optimize_for_inference(
        inputGraph,
        input_node_names=['lanenet/input_tensor'],
        output_node_names=[
                'lanenet/final_binary_output',
                'lanenet/final_pixel_embedding_output'],
        placeholder_type_enum=tf.int32.as_datatype_enum
    )"""

    outputGraph = TransformGraph(
        inputGraph,
        ['lanenet/input_tensor'],
        ['lanenet/final_binary_output',
         'lanenet/final_pixel_embedding_output'],
        ['remove_nodes(op=Identity, op=CheckNumerics)',
         'merge_duplicate_nodes',
         'strip_unused_nodes',
         'fold_constants(ignore_errors=true)',
         'fold_batch_norms',
         'fold_old_batch_norms',
         'quantize_weights',
         'quantize_nodes',
         'sort_by_execution_order']
    )

    new_name = model_path.split('/')[-2] + '/OptimizedGraph.pb'
    model = tf.gfile.FastGFile(new_name, 'w')
    model.write(outputGraph.SerializeToString())
def test_lanenet(image_path, weights_path):
    """

    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(image_path), '{:s} not exist'.format(image_path)

    log.info('Start reading image and preprocessing')
    t_start = time.time()
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image_vis = image
    image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
    image = image / 127.5 - 1.0
    log.info('Image load complete, cost time: {:.5f}s'.format(time.time() -
                                                              t_start))

    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')

    n_images = 0
    total_runtime = 0
    for i in range(1000):
        start_time = time.time()
        binary_seg_ret, instance_seg_ret = net.inference(
            input_tensor=input_tensor, name='lanenet_model')
        # mask = binary_seg_ret[0]
        # mask *= 255
        # mask = mask.astype(np.uint8)
        run_time = time.time() - start_time
        total_runtime += run_time
        n_images += 1

        avg_time = total_runtime / n_images
        print("Avg time: " + str(avg_time) + " - FPS: " + str(1 / avg_time))

    return
    def __init__(self, weights_path):

        with tf.device('/cpu:0'):
            self.input_tensor = tf.placeholder(dtype=tf.float32,
                                               shape=[1, 256, 512, 3],
                                               name='input_tensor')

            net = lanenet.LaneNet(phase='test', net_flag='vgg')
            self.binary_seg_ret, self.instance_seg_ret = net.inference(
                input_tensor=self.input_tensor, name='lanenet_model')

            self.postprocessor = lanenet_postprocess.LaneNetPostProcessor()

            saver = tf.train.Saver()
            # Set sess configuration
            sess_config = tf.ConfigProto()
            sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
            sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
            sess_config.gpu_options.allocator_type = 'BFC'
            self.sess = tf.Session(config=sess_config)
            with self.sess.as_default():
                saver.restore(sess=self.sess, save_path=weights_path)
Esempio n. 15
0
pb_file = "model/tusimple_lanenet_mobilenet_v2_1005/culane_lanenet_mobilenet_v2_1213.pb"
#ckpt_file = cfg.YOLO.DEMO_WEIGHT
ckpt_file = 'model/tusimple_lanenet_mobilenet_v2_1005/culane_lanenet_mobilenet_v2_1005_reduce_train.ckpt'
# output_node_names = ["input/input_data", "pred_sbbox/concat_2", "pred_mbbox/concat_2", "pred_lbbox/concat_2"]
#
#output_node_names = ["input_tensor", "lanenet_loss/inference/decode/score_final/Conv2D", "lanenet_loss/pix_embedding_conv/Conv2D"]
output_node_names = [
    "input_tensor", "lanenet_model/mobilenet_v2_backend/binary_seg/ArgMax",
    "lanenet_model/mobilenet_v2_backend/instance_seg/pix_embedding_conv/Conv2D"
]

input_data = tf.placeholder(dtype=tf.float32,
                            name='input_tensor',
                            shape=[None, None, None, 3])
phase_tensor = tf.constant('false', tf.string)
net = lanenet.LaneNet(phase=phase_tensor, net_flag='mobilenet_v2')
model = net.inference(input_data, name='lanenet_model')
#print(model.conv_sbbox, model.conv_mbbox, model.conv_lbbox)

sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
saver = tf.train.Saver()
saver.restore(sess, ckpt_file)

converted_graph_def = tf.graph_util.convert_variables_to_constants(
    sess,
    input_graph_def=sess.graph.as_graph_def(),
    output_node_names=output_node_names)

with tf.gfile.GFile(pb_file, "wb") as f:
    f.write(converted_graph_def.SerializeToString())
Esempio n. 16
0
def test_lanenet(image_path, weights_path):
    """

    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(image_path), '{:s} not exist'.format(image_path)

    log.info('Start reading image and preprocessing')
    t_start = time.time()
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image_vis = image
    image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
    image = image / 127.5 - 1.0
    log.info('Image load complete, cost time: {:.5f}s'.format(time.time() - t_start))

    input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 256, 512, 3], name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor, name='lanenet_model')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor()

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():

        saver.restore(sess=sess, save_path=weights_path)

        writer = tf.summary.FileWriter('logs', sess.graph)
        t_start = time.time()
        binary_seg_image, instance_seg_image = sess.run(
            [binary_seg_ret, instance_seg_ret],
            feed_dict={input_tensor: [image]}
        )
        writer.close()
        t_cost = time.time() - t_start
        log.info('Single imgae inference cost time: {:.5f}s'.format(t_cost))

        postprocess_result = postprocessor.postprocess(
            binary_seg_result=binary_seg_image[0],
            instance_seg_result=instance_seg_image[0],
            source_image=image_vis
        )
        mask_image = postprocess_result['mask_image']

        for i in range(CFG.TRAIN.EMBEDDING_FEATS_DIMS):
            instance_seg_image[0][:, :, i] = minmax_scale(instance_seg_image[0][:, :, i])
        embedding_image = np.array(instance_seg_image[0], np.uint8)

        print([n.name for n in sess.graph.as_graph_def().node])

        #output_node_names = "lanenet_model/vgg_backend/instance_seg/pix_embedding_conv/Conv2D"
        output_node_names = ["lanenet_model/vgg_backend/binary_seg/ArgMax"]
        output_node_names = ["lanenet_model/vgg_backend/instance_seg/pix_embedding_conv/Conv2D", "lanenet_model/vgg_backend/binary_seg/ArgMax"]
        input_graph_def = sess.graph.as_graph_def()
        # output_node_names="train_IteratorGetNext"
        output_graph_def = graph_util.convert_variables_to_constants(
            sess,  # The session
            input_graph_def,  # input_graph_def is useful for retrieving the nodes
            output_node_names)

        import tensorflow.contrib.tensorrt as trt

        trt_graph = trt.create_inference_graph(
            input_graph_def=output_graph_def,
            outputs=output_node_names,
            max_batch_size=1,
            max_workspace_size_bytes=1 << 25,
            precision_mode='INT8',
            minimum_segment_size=50
        )


        with open('lanenet_trt_2outputs.pb', 'wb') as f:
            f.write(trt_graph.SerializeToString())


        plt.figure('mask_image')
        plt.imshow(mask_image[:, :, (2, 1, 0)])
        plt.figure('src_image')
        plt.imshow(image_vis[:, :, (2, 1, 0)])
        plt.figure('instance_image')
        plt.imshow(embedding_image[:, :, (2, 1, 0)])
        plt.figure('binary_image')
        plt.imshow(binary_seg_image[0] * 255, cmap='gray')
        plt.show()

        cv2.imwrite('instance_mask_image.png', mask_image)
        cv2.imwrite('source_image.png', postprocess_result['source_image'])
        cv2.imwrite('binary_mask_image.png', binary_seg_image[0] * 255)


    sess.close()

    return
    def __init__(self):
        """
        initialize lanenet multi gpu trainner
        """
        # define solver params and dataset
        self._train_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
            flags='train')
        self._val_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
            flags='val')
        self._steps_per_epoch = len(self._train_dataset)
        self._val_steps_per_epoch = len(self._val_dataset)

        self._model_name = '{:s}_{:s}'.format(CFG.MODEL.FRONT_END,
                                              CFG.MODEL.MODEL_NAME)

        self._train_epoch_nums = CFG.TRAIN.EPOCH_NUMS
        self._batch_size = CFG.TRAIN.BATCH_SIZE
        self._val_batch_size = CFG.TRAIN.VAL_BATCH_SIZE
        self._snapshot_epoch = CFG.TRAIN.SNAPSHOT_EPOCH
        self._model_save_dir = ops.join(CFG.TRAIN.MODEL_SAVE_DIR,
                                        self._model_name)
        self._tboard_save_dir = ops.join(CFG.TRAIN.TBOARD_SAVE_DIR,
                                         self._model_name)
        self._enable_miou = CFG.TRAIN.COMPUTE_MIOU.ENABLE
        if self._enable_miou:
            self._record_miou_epoch = CFG.TRAIN.COMPUTE_MIOU.EPOCH
        self._input_tensor_size = [int(tmp) for tmp in CFG.AUG.TRAIN_CROP_SIZE]
        self._gpu_devices = CFG.TRAIN.MULTI_GPU.GPU_DEVICES
        self._gpu_nums = len(self._gpu_devices)
        self._chief_gpu_index = CFG.TRAIN.MULTI_GPU.CHIEF_DEVICE_INDEX
        self._batch_size_per_gpu = int(self._batch_size / self._gpu_nums)

        self._init_learning_rate = CFG.SOLVER.LR
        self._moving_ave_decay = CFG.SOLVER.MOVING_AVE_DECAY
        self._momentum = CFG.SOLVER.MOMENTUM
        self._lr_polynimal_decay_power = CFG.SOLVER.LR_POLYNOMIAL_POWER
        self._optimizer_mode = CFG.SOLVER.OPTIMIZER.lower()

        if CFG.TRAIN.RESTORE_FROM_SNAPSHOT.ENABLE:
            self._initial_weight = CFG.TRAIN.RESTORE_FROM_SNAPSHOT.SNAPSHOT_PATH
        else:
            self._initial_weight = None
        if CFG.TRAIN.WARM_UP.ENABLE:
            self._warmup_epoches = CFG.TRAIN.WARM_UP.EPOCH_NUMS
            self._warmup_init_learning_rate = self._init_learning_rate / 1000.0
        else:
            self._warmup_epoches = 0

        # define tensorflow session
        sess_config = tf.ConfigProto(allow_soft_placement=True)
        sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
        sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH
        sess_config.gpu_options.allocator_type = 'BFC'
        self._sess = tf.Session(config=sess_config)

        # define graph input tensor
        with tf.variable_scope(name_or_scope='graph_input_node'):
            self._input_src_image_list = []
            self._input_binary_label_image_list = []
            self._input_instance_label_image_list = []
            for i in range(self._gpu_nums):
                src_imgs, binary_label_imgs, instance_label_imgs = self._train_dataset.next_batch(
                    batch_size=self._batch_size_per_gpu)
                self._input_src_image_list.append(src_imgs)
                self._input_binary_label_image_list.append(binary_label_imgs)
                self._input_instance_label_image_list.append(
                    instance_label_imgs)
            self._val_input_src_image, self._val_input_binary_label_image, self._val_input_instance_label_image = \
                self._val_dataset.next_batch(batch_size=self._val_batch_size)

        # define model
        self._model = lanenet.LaneNet(phase='train')
        self._val_model = lanenet.LaneNet(phase='test')

        # define average container
        tower_grads = []
        tower_total_loss = []
        tower_binary_seg_loss = []
        tower_instance_seg_loss = []
        batchnorm_updates = None

        # define learning rate
        with tf.variable_scope('learning_rate'):
            self._global_step = tf.Variable(1.0,
                                            dtype=tf.float32,
                                            trainable=False,
                                            name='global_step')
            self._val_global_step = tf.Variable(1.0,
                                                dtype=tf.float32,
                                                trainable=False,
                                                name='val_global_step')
            self._val_global_step_update = tf.assign_add(
                self._val_global_step, 1.0)
            warmup_steps = tf.constant(self._warmup_epoches *
                                       self._steps_per_epoch,
                                       dtype=tf.float32,
                                       name='warmup_steps')
            train_steps = tf.constant(self._train_epoch_nums *
                                      self._steps_per_epoch,
                                      dtype=tf.float32,
                                      name='train_steps')
            self._learn_rate = tf.cond(
                pred=self._global_step < warmup_steps,
                true_fn=lambda: self._compute_warmup_lr(
                    warmup_steps=warmup_steps, name='warmup_lr'),
                false_fn=lambda: tf.train.polynomial_decay(
                    learning_rate=self._init_learning_rate,
                    global_step=self._global_step,
                    decay_steps=train_steps,
                    end_learning_rate=0.000000001,
                    power=self._lr_polynimal_decay_power))
            self._learn_rate = tf.identity(self._learn_rate, 'lr')

        # define optimizer
        if self._optimizer_mode == 'sgd':
            optimizer = tf.train.MomentumOptimizer(
                learning_rate=self._learn_rate, momentum=self._momentum)
        elif self._optimizer_mode == 'adam':
            optimizer = tf.train.AdamOptimizer(
                learning_rate=self._learn_rate, )
        else:
            raise NotImplementedError(
                'Not support optimizer: {:s} for now'.format(
                    self._optimizer_mode))

        # define distributed train op
        with tf.variable_scope(tf.get_variable_scope()):
            is_network_initialized = False
            for i in range(self._gpu_nums):
                with tf.device('/gpu:{:d}'.format(i)):
                    with tf.name_scope('tower_{:d}'.format(i)) as _:
                        input_images = self._input_src_image_list[i]
                        input_binary_labels = self._input_binary_label_image_list[
                            i]
                        input_instance_labels = self._input_instance_label_image_list[
                            i]
                        tmp_loss, tmp_grads = self._compute_net_gradients(
                            input_images,
                            input_binary_labels,
                            input_instance_labels,
                            optimizer,
                            is_net_first_initialized=is_network_initialized)
                        is_network_initialized = True

                        # Only use the mean and var in the chief gpu tower to update the parameter
                        if i == self._chief_gpu_index:
                            batchnorm_updates = tf.get_collection(
                                tf.GraphKeys.UPDATE_OPS)

                        tower_grads.append(tmp_grads)
                        tower_total_loss.append(tmp_loss['total_loss'])
                        tower_binary_seg_loss.append(
                            tmp_loss['binary_seg_loss'])
                        tower_instance_seg_loss.append(
                            tmp_loss['discriminative_loss'])
        grads = self._average_gradients(tower_grads)
        self._loss = tf.reduce_mean(tower_total_loss,
                                    name='reduce_mean_tower_total_loss')
        self._binary_loss = tf.reduce_mean(
            tower_binary_seg_loss, name='reduce_mean_tower_binary_loss')
        self._instance_loss = tf.reduce_mean(
            tower_instance_seg_loss, name='reduce_mean_tower_instance_loss')
        ret = self._val_model.compute_loss(
            input_tensor=self._val_input_src_image,
            binary_label=self._val_input_binary_label_image,
            instance_label=self._val_input_instance_label_image,
            name='LaneNet',
            reuse=True)
        self._val_loss = ret['total_loss']
        self._val_binary_loss = ret['binary_seg_loss']
        self._val_instance_loss = ret['discriminative_loss']

        # define moving average op
        with tf.variable_scope(name_or_scope='moving_avg'):
            if CFG.TRAIN.FREEZE_BN.ENABLE:
                train_var_list = [
                    v for v in tf.trainable_variables()
                    if 'beta' not in v.name and 'gamma' not in v.name
                ]
            else:
                train_var_list = tf.trainable_variables()
            moving_ave_op = tf.train.ExponentialMovingAverage(
                self._moving_ave_decay).apply(train_var_list +
                                              tf.moving_average_variables())

        # group all the op needed for training
        batchnorm_updates_op = tf.group(*batchnorm_updates)
        apply_gradient_op = optimizer.apply_gradients(
            grads, global_step=self._global_step)
        self._train_op = tf.group(apply_gradient_op, moving_ave_op,
                                  batchnorm_updates_op)

        # define prediction
        self._binary_prediciton, self._instance_prediciton = self._model.inference(
            input_tensor=self._input_src_image_list[self._chief_gpu_index],
            name='LaneNet',
            reuse=True)
        self._binary_prediciton = tf.identity(
            self._binary_prediciton, name='binary_segmentation_result')
        self._val_binary_prediction, self._val_instance_prediciton = self._val_model.inference(
            input_tensor=self._val_input_src_image, name='LaneNet', reuse=True)
        self._val_binary_prediction = tf.identity(
            self._val_binary_prediction, name='val_binary_segmentation_result')

        # define miou
        if self._enable_miou:
            with tf.variable_scope('miou'):
                pred = tf.reshape(self._binary_prediciton, [
                    -1,
                ])
                gt = tf.reshape(
                    self._input_binary_label_image_list[self._chief_gpu_index],
                    [
                        -1,
                    ])
                indices = tf.squeeze(
                    tf.where(tf.less_equal(gt, CFG.DATASET.NUM_CLASSES - 1)),
                    1)
                gt = tf.gather(gt, indices)
                pred = tf.gather(pred, indices)
                self._miou, self._miou_update_op = tf.metrics.mean_iou(
                    labels=gt,
                    predictions=pred,
                    num_classes=CFG.DATASET.NUM_CLASSES)

                val_pred = tf.reshape(self._val_binary_prediction, [
                    -1,
                ])
                val_gt = tf.reshape(self._val_input_binary_label_image, [
                    -1,
                ])
                indices = tf.squeeze(
                    tf.where(tf.less_equal(val_gt,
                                           CFG.DATASET.NUM_CLASSES - 1)), 1)
                val_gt = tf.gather(val_gt, indices)
                val_pred = tf.gather(val_pred, indices)
                self._val_miou, self._val_miou_update_op = tf.metrics.mean_iou(
                    labels=val_gt,
                    predictions=val_pred,
                    num_classes=CFG.DATASET.NUM_CLASSES)

        # define saver and loader
        with tf.variable_scope('loader_and_saver'):
            self._net_var = [
                vv for vv in tf.global_variables() if 'lr' not in vv.name
            ]
            self._loader = tf.train.Saver(self._net_var)
            self._saver = tf.train.Saver(max_to_keep=10)

        # define summary
        with tf.variable_scope('summary'):
            summary_merge_list = [
                tf.summary.scalar("learn_rate", self._learn_rate),
                tf.summary.scalar("total_loss", self._loss),
                tf.summary.scalar('binary_loss', self._binary_loss),
                tf.summary.scalar('instance_loss', self._instance_loss),
            ]
            val_summary_merge_list = [
                tf.summary.scalar('val_total_loss', self._val_loss),
                tf.summary.scalar('val_binary_loss', self._val_binary_loss),
                tf.summary.scalar('val_instance_loss',
                                  self._val_instance_loss),
            ]
            if self._enable_miou:
                with tf.control_dependencies([self._miou_update_op]):
                    summary_merge_list_with_miou = [
                        tf.summary.scalar("learn_rate", self._learn_rate),
                        tf.summary.scalar("total_loss", self._loss),
                        tf.summary.scalar('binary_loss', self._binary_loss),
                        tf.summary.scalar('instance_loss',
                                          self._instance_loss),
                        tf.summary.scalar('miou', self._miou)
                    ]
                    self._write_summary_op_with_miou = tf.summary.merge(
                        summary_merge_list_with_miou)
                with tf.control_dependencies(
                    [self._val_miou_update_op, self._val_global_step_update]):
                    val_summary_merge_list_with_miou = [
                        tf.summary.scalar("total_loss", self._loss),
                        tf.summary.scalar('binary_loss', self._binary_loss),
                        tf.summary.scalar('instance_loss',
                                          self._instance_loss),
                        tf.summary.scalar('val_miou', self._val_miou),
                    ]
                    self._val_write_summary_op_with_miou = tf.summary.merge(
                        val_summary_merge_list_with_miou)
            if ops.exists(self._tboard_save_dir):
                shutil.rmtree(self._tboard_save_dir)
            os.makedirs(self._tboard_save_dir, exist_ok=True)
            model_params_file_save_path = ops.join(
                self._tboard_save_dir, CFG.TRAIN.MODEL_PARAMS_CONFIG_FILE_NAME)
            with open(model_params_file_save_path, 'w',
                      encoding='utf-8') as f_obj:
                CFG.dump_to_json_file(f_obj)
            self._write_summary_op = tf.summary.merge(summary_merge_list)
            self._val_write_summary_op = tf.summary.merge(
                val_summary_merge_list)
            self._summary_writer = tf.summary.FileWriter(
                self._tboard_save_dir, graph=self._sess.graph)

        LOG.info('Initialize tusimple lanenet multi gpu trainner complete')
def evaluate_lanenet_accuracy_ckpt(data_path, weights_path):
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor()

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    gt_image_path = ops.join(data_path, 'gt_image')
    gt_binary_path = ops.join(data_path, 'gt_binary_image')

    accuracy_sum = 0.0
    fp_sum = 0.0
    fn_sum = 0.0

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)
        image_path_list = os.listdir(gt_image_path)
        i = 0
        for image_path in image_path_list:
            image_path = ops.join(gt_image_path, image_path)
            print(image_path)
            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            # image_vis = image
            image = cv2.resize(image, (512, 256),
                               interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0  # 归一化 (只归一未改变维数)

            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})

            image_name = ops.split(image_path)[1]
            gt_image = cv2.imread(ops.join(gt_binary_path, image_name),
                                  cv2.IMREAD_COLOR)

            image_vis = gt_image

            postprocess_result = postprocessor.postprocess_for_test(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis)

            plt.figure("result")
            plt.imshow(postprocess_result['mask_image'])
            plt.show()

            # binary_seg_image = binary_seg_image.astype((np.float32))
            # print(binary_seg_image.shape)

            # binary_seg_image = binary_seg_image.reshape(1, 256, 512, 1)
            # binary_seg_image = cv2.resize(postprocess_result['source_image'], (512, 256), interpolation=cv2.INTER_LINEAR)
            binary_seg_image = postprocess_result['source_image'].reshape(
                1, 720, 1280, 1)

            # gt_image = cv2.resize(gt_image, (512, 256), interpolation=cv2.INTER_LINEAR)

            gt_image = gt_image[:, :, 0].reshape(720, 1280, 1)

            binary_tensor = tf.placeholder(dtype=tf.float32,
                                           shape=[1, 720, 1280, 1],
                                           name='binary_tensor')
            gt_tensor = tf.placeholder(dtype=tf.float32,
                                       shape=[1, 720, 1280, 1],
                                       name='gt_tensor')

            accuracy, count, idx = evaluate_model_utils.calculate_model_precision_for_test(
                binary_tensor, gt_tensor)

            fn = evaluate_model_utils.calculate_model_fn_for_test(
                binary_tensor, gt_tensor)

            fp = evaluate_model_utils.calculate_model_fp_for_test(
                binary_tensor, gt_tensor)

            accuracy_result, count_result, idx = sess.run(
                [accuracy, count, idx],
                feed_dict={
                    binary_tensor: binary_seg_image,
                    gt_tensor: [gt_image]
                })

            fn_result = sess.run(fn,
                                 feed_dict={
                                     binary_tensor: binary_seg_image,
                                     gt_tensor: [gt_image]
                                 })

            fp_result = sess.run(fp,
                                 feed_dict={
                                     binary_tensor: binary_seg_image,
                                     gt_tensor: [gt_image]
                                 })

            print("accuracy:", accuracy_result, count_result, idx)
            print("fn:", fn_result)
            print("fp:", fp_result)

            i += 1
            accuracy_sum += accuracy_result
            fp_sum += fp_result
            fn_sum += fn_result
            if i == 100:
                print("average_accuracy: ", accuracy_sum / 100.0)
                print("average_fn: ", fn_sum / 100.0)
                print("average_fp: ", fp_sum / 100.0)
                break

    return
Esempio n. 19
0
        ax4.set_title("Result Image")
        plt.show()
        """
        return res_img
    sess.close()


if __name__ == '__main__':
    weights_path = "model/tusimple_lanenet/tusimple_lanenet.ckpt"

    # placeholder 자료형의 변수 생성(텐서를 placeholder에 맵핑) -> 입력텐서
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')

    net = lanenet.LaneNet(phase='test',
                          cfg=CFG)  # 딥러닝 네트워크 그래프 설정, 딥러닝 추론위한 텐서 생성
    # 텐서플로우 그래프 빌드, 그래프는 세션 실행시 실제로 실행되는 내용 정의
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='LaneNet')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor(
        cfg=CFG)  # 이미지 후처리 하기위해 postprocessor 객체 생성

    # Set sess configuration (텐서플로우 GPU메모리 할당 설정)
    sess_config = tf.ConfigProto()  # 세션설정정보 저장하기 위한 객체생성
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH  # 상황에 맞게 자동으로 메모리 할당
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)  # 세션 설정 이용하여 세션 생성하여 저장
def test_lanenet(video_path, weights_path):
    """

    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(video_path), '{:s} not exist'.format(video_path)

    obj_w = 1920
    obj_h = 320
    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, obj_h, obj_w, 3],
                                  name='input_tensor')
    net = lanenet.LaneNet(phase='test', cfg=CFG)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='LaneNet')
    postprocessor = lanenet_postprocess.LaneNetPostProcessor(cfg=CFG)

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    # define moving average version of the learned variables for eval
    with tf.variable_scope(name_or_scope='moving_avg'):
        variable_averages = tf.train.ExponentialMovingAverage(
            CFG.SOLVER.MOVING_AVE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()

    # define saver
    saver = tf.train.Saver(variables_to_restore)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)

        cap = cv2.VideoCapture(video_path)
        fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        log.info('width: %d, height: %d', width, height)
        out = cv2.VideoWriter('out.mp4',
                              fourcc,
                              15, (obj_w, obj_h),
                              isColor=True)
        nn = 1000
        #while(cap.isOpened() and nn >= 0):
        while (cap.isOpened()):
            nn = nn - 1
            ret, image = cap.read()
            if ret:
                #image = cv2.imread('/workspace/lanenet-lane-detection/1410486660.jpg')
                # image = cv2.resize(image, (1280, 720), interpolation=cv2.INTER_LINEAR)
                image = image[442:762, :]
                image_vis = image.copy()
                image = image / 127.5 - 1.0

                t_start = time.time()
                binary_seg_image, instance_seg_image = sess.run(
                    [binary_seg_ret, instance_seg_ret],
                    feed_dict={input_tensor: [image]})
                t_cost = time.time() - t_start
                LOG.info(
                    'Single image inference cost time: {:.5f}s'.format(t_cost))
                #log.info(instance_seg_image.shape)

                #mask_image = gen_color_img(binary_seg_image[0], instance_seg_image[0], 5)
                #cv2.imwrite('test.png', mask_image)
                #return
                postprocess_result = postprocessor.postprocess2(
                    binary_seg_result=binary_seg_image[0],
                    instance_seg_result=instance_seg_image[0],
                    source_image=image_vis)
                binary_image = postprocess_result['binary_image']
                instance_image = postprocess_result['instance_image']
                '''
                np.set_printoptions(suppress = True, precision = 2, threshold = np.inf)
                print('before: ')
                print(instance_seg_image[0])
                for i in range(CFG.TRAIN.EMBEDDING_FEATS_DIMS):
                    instance_seg_image[0][:, :, i] = minmax_scale(instance_seg_image[0][:, :, i])
                embedding_image = np.array(instance_seg_image[0], np.uint8)
                print('after: ')
                print(embedding_image)
                '''
                out.write(np.uint8(instance_image))
                #out.write(np.uint8(mask_image))
                #cv2.imwrite('test.png', binary_image)
                #return
            else:
                break
        cap.release()
        out.release()

    sess.close()
    return
def test_lanenet_batch(src_dir, weights_path, save_dir, net_flag):
    """

    :param src_dir:
    :param weights_path:
    :param save_dir:
    :return:
    """
    assert ops.exists(src_dir), '{:s} not exist'.format(src_dir)

    os.makedirs(save_dir, exist_ok=True)

    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag=net_flag)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor()

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():

        saver.restore(sess=sess, save_path=weights_path)

        image_list = glob.glob('{:s}/**/*.jpg'.format(src_dir), recursive=True)
        avg_time_cost = []
        for index, image_path in tqdm.tqdm(enumerate(image_list),
                                           total=len(image_list)):

            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            image_vis = image
            image = cv2.resize(image, (512, 256),
                               interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0

            t_start = time.time()
            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})
            avg_time_cost.append(time.time() - t_start)

            postprocess_result = postprocessor.postprocess(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis)

            if index % 100 == 0:
                log.info(
                    'Mean inference time every single image: {:.5f}s'.format(
                        np.mean(avg_time_cost)))
                avg_time_cost.clear()

            input_image_dir = ops.split(image_path.split('clips')[1])[0][1:]
            input_image_name = ops.split(image_path)[1]
            output_image_dir = ops.join(save_dir, input_image_dir)
            os.makedirs(output_image_dir, exist_ok=True)
            output_image_path = ops.join(output_image_dir, input_image_name)
            if ops.exists(output_image_path):
                continue

            cv2.imwrite(output_image_path, postprocess_result['source_image'])

    return
Esempio n. 22
0
def test_lanenet_batch(image_list, weights_path, batch_size, use_gpu, net_flag='vgg'):
    """

    :param image_list:
    :param weights_path:
    :param batch_size:
    :param use_gpu:
    :param net_flag:
    :return:
    """
    assert ops.exists(image_list), '{:s} not exist'.format(image_list)

    log.info('开始加载数据集列表...')
    test_dataset = lanenet_data_processor.DataSet(image_list, traing=False)

    # ==============================
    gt_label_binary_list = []
    with open(image_list, 'r') as file:
        for _info in file:
            info_tmp = _info.strip(' ').split()
            gt_label_binary_list.append(info_tmp[1])
    # ==============================

    input_tensor = tf.placeholder(dtype=tf.float32, shape=[None, 256, 512, 3], name='input_tensor')
    binary_label_tensor = tf.placeholder(dtype=tf.int64,
                                         shape=[None, 256, 512, 1], name='binary_input_label')
    phase_tensor = tf.constant('test', tf.string)
    net = lanenet.LaneNet(phase=phase_tensor, net_flag=net_flag)
    binary_seg_ret, instance_seg_ret, recall_ret, false_positive, false_negative, precision_ret, accuracy_ret = \
        net.compute_acc(input_tensor=input_tensor, binary_label_tensor=binary_label_tensor, name='lanenet_model')

    saver = tf.train.Saver()
    # ==============================
    # Set sess configuration
    if use_gpu:
        sess_config = tf.ConfigProto(device_count={'GPU': 1})
    else:
        sess_config = tf.ConfigProto(device_count={'GPU': 0})
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'
    # ==============================
    sess = tf.Session(config=sess_config)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)
        epoch_nums = int(math.ceil(test_dataset._dataset_size / batch_size))
        mean_accuracy = 0.0
        mean_recall = 0.0
        mean_precision = 0.0
        mean_fp = 0.0
        mean_fn = 0.0
        total_num = 0
        t_start = time.time()
        for epoch in range(epoch_nums):
            gt_imgs, binary_gt_labels, instance_gt_labels = test_dataset.next_batch(batch_size)
            if net_flag == 'vgg':
                image_list_epoch = [tmp / 127.5 - 1.0 for tmp in gt_imgs]
            elif net_flag == 'mobilenet_v2':
                image_list_epoch = [tmp - [103.939, 116.779, 123.68] for tmp in gt_imgs]

            binary_seg_images, instance_seg_images, recall, fp, fn, precision, accuracy = sess.run(
                [binary_seg_ret, instance_seg_ret, recall_ret, false_positive, false_negative, precision_ret, accuracy_ret],
                feed_dict={input_tensor: image_list_epoch, binary_label_tensor: binary_gt_labels})
            # ==============================
            out_dir = 'H:/Other_DataSets/TuSimple/out/'
            dst_binary_image_path = ops.join(out_dir,gt_label_binary_list[epoch])
            root_dir = ops.dirname(ops.abspath(dst_binary_image_path))
            if not os.path.exists(root_dir):
                os.makedirs(root_dir)
            cv2.imwrite(dst_binary_image_path, binary_seg_images[0] * 255)
            # ==============================
            print(recall, fp, fn)
            mean_accuracy += accuracy
            mean_precision += precision
            mean_recall += recall
            mean_fp += fp
            mean_fn += fn
            total_num += len(gt_imgs)
        t_cost = time.time() - t_start
        mean_accuracy = mean_accuracy / epoch_nums
        mean_precision = mean_precision / epoch_nums
        mean_recall = mean_recall / epoch_nums
        mean_fp = mean_fp / epoch_nums
        mean_fn = mean_fn / epoch_nums
        print('测试 {} 张图片,耗时{},{}_recall = {}, precision = {}, accuracy = {}, fp = {}, fn = {}, '.format(
            total_num, t_cost, net_flag, mean_recall, mean_precision, mean_accuracy, mean_fp, mean_fn))

    sess.close()
Esempio n. 23
0
        except Exception as e:
            print("Unable to show image: "+str(e))
        cv2.waitKey(1)        
    detect_object_alive = False



"""
:param image_path:
:param weights_path:
:return:
"""
input_tensor = tf.placeholder(dtype=tf.float32, shape=[
                              1, 256, 512, 3], name='input_tensor')

net = lanenet.LaneNet(phase='test', net_flag='vgg')
binary_seg_ret, instance_seg_ret = net.inference(
    input_tensor=input_tensor, name='lanenet_model')
saver = tf.train.Saver()
# Set sess configuration
sess_config = tf.ConfigProto()
sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
sess_config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=sess_config)
saver.restore(sess=sess, save_path=weights_path)

def inference_net():
    global detect_lane_alive,image_0
    detect_lane_alive = True
    # preprocess
Esempio n. 24
0
def train_lanenet(dataset_dir, weights_path=None, net_flag='vgg'):
    """

    :param dataset_dir:
    :param net_flag: choose which base network to use
    :param weights_path:
    :return:
    """
    train_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
        dataset_dir=dataset_dir, flags='train')
    val_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
        dataset_dir=dataset_dir, flags='val')

    with tf.device('/gpu:1'):
        # set lanenet
        train_net = lanenet.LaneNet(net_flag=net_flag,
                                    phase='train',
                                    reuse=False)
        val_net = lanenet.LaneNet(net_flag=net_flag, phase='val', reuse=True)

        # set compute graph node for training
        train_images, train_binary_labels, train_instance_labels = train_dataset.inputs(
            CFG.TRAIN.BATCH_SIZE, 1)

        train_compute_ret = train_net.compute_loss(
            input_tensor=train_images,
            binary_label=train_binary_labels,
            instance_label=train_instance_labels,
            name='lanenet_model')
        train_total_loss = train_compute_ret['total_loss']
        train_binary_seg_loss = train_compute_ret['binary_seg_loss']
        train_disc_loss = train_compute_ret['discriminative_loss']
        train_pix_embedding = train_compute_ret['instance_seg_logits']

        train_prediction_logits = train_compute_ret['binary_seg_logits']
        train_prediction_score = tf.nn.softmax(logits=train_prediction_logits)
        train_prediction = tf.argmax(train_prediction_score, axis=-1)

        train_accuracy = evaluate_model_utils.calculate_model_precision(
            train_compute_ret['binary_seg_logits'], train_binary_labels)
        train_fp = evaluate_model_utils.calculate_model_fp(
            train_compute_ret['binary_seg_logits'], train_binary_labels)
        train_fn = evaluate_model_utils.calculate_model_fn(
            train_compute_ret['binary_seg_logits'], train_binary_labels)
        train_binary_seg_ret_for_summary = evaluate_model_utils.get_image_summary(
            img=train_prediction)
        train_embedding_ret_for_summary = evaluate_model_utils.get_image_summary(
            img=train_pix_embedding)

        train_cost_scalar = tf.summary.scalar(name='train_cost',
                                              tensor=train_total_loss)
        train_accuracy_scalar = tf.summary.scalar(name='train_accuracy',
                                                  tensor=train_accuracy)
        train_binary_seg_loss_scalar = tf.summary.scalar(
            name='train_binary_seg_loss', tensor=train_binary_seg_loss)
        train_instance_seg_loss_scalar = tf.summary.scalar(
            name='train_instance_seg_loss', tensor=train_disc_loss)
        train_fn_scalar = tf.summary.scalar(name='train_fn', tensor=train_fn)
        train_fp_scalar = tf.summary.scalar(name='train_fp', tensor=train_fp)
        train_binary_seg_ret_img = tf.summary.image(
            name='train_binary_seg_ret',
            tensor=train_binary_seg_ret_for_summary)
        train_embedding_feats_ret_img = tf.summary.image(
            name='train_embedding_feats_ret',
            tensor=train_embedding_ret_for_summary)
        train_merge_summary_op = tf.summary.merge([
            train_accuracy_scalar, train_cost_scalar,
            train_binary_seg_loss_scalar, train_instance_seg_loss_scalar,
            train_fn_scalar, train_fp_scalar, train_binary_seg_ret_img,
            train_embedding_feats_ret_img
        ])

        # set compute graph node for validation
        val_images, val_binary_labels, val_instance_labels = val_dataset.inputs(
            CFG.TRAIN.VAL_BATCH_SIZE, 1)

        val_compute_ret = val_net.compute_loss(
            input_tensor=val_images,
            binary_label=val_binary_labels,
            instance_label=val_instance_labels,
            name='lanenet_model')
        val_total_loss = val_compute_ret['total_loss']
        val_binary_seg_loss = val_compute_ret['binary_seg_loss']
        val_disc_loss = val_compute_ret['discriminative_loss']
        val_pix_embedding = val_compute_ret['instance_seg_logits']

        val_prediction_logits = val_compute_ret['binary_seg_logits']
        val_prediction_score = tf.nn.softmax(logits=val_prediction_logits)
        val_prediction = tf.argmax(val_prediction_score, axis=-1)

        val_accuracy = evaluate_model_utils.calculate_model_precision(
            val_compute_ret['binary_seg_logits'], val_binary_labels)
        val_fp = evaluate_model_utils.calculate_model_fp(
            val_compute_ret['binary_seg_logits'], val_binary_labels)
        val_fn = evaluate_model_utils.calculate_model_fn(
            val_compute_ret['binary_seg_logits'], val_binary_labels)
        val_binary_seg_ret_for_summary = evaluate_model_utils.get_image_summary(
            img=val_prediction)
        val_embedding_ret_for_summary = evaluate_model_utils.get_image_summary(
            img=val_pix_embedding)

        val_cost_scalar = tf.summary.scalar(name='val_cost',
                                            tensor=val_total_loss)
        val_accuracy_scalar = tf.summary.scalar(name='val_accuracy',
                                                tensor=val_accuracy)
        val_binary_seg_loss_scalar = tf.summary.scalar(
            name='val_binary_seg_loss', tensor=val_binary_seg_loss)
        val_instance_seg_loss_scalar = tf.summary.scalar(
            name='val_instance_seg_loss', tensor=val_disc_loss)
        val_fn_scalar = tf.summary.scalar(name='val_fn', tensor=val_fn)
        val_fp_scalar = tf.summary.scalar(name='val_fp', tensor=val_fp)
        val_binary_seg_ret_img = tf.summary.image(
            name='val_binary_seg_ret', tensor=val_binary_seg_ret_for_summary)
        val_embedding_feats_ret_img = tf.summary.image(
            name='val_embedding_feats_ret',
            tensor=val_embedding_ret_for_summary)
        val_merge_summary_op = tf.summary.merge([
            val_accuracy_scalar, val_cost_scalar, val_binary_seg_loss_scalar,
            val_instance_seg_loss_scalar, val_fn_scalar, val_fp_scalar,
            val_binary_seg_ret_img, val_embedding_feats_ret_img
        ])

        # set optimizer
        global_step = tf.Variable(0, trainable=False)
        learning_rate = tf.train.polynomial_decay(
            learning_rate=CFG.TRAIN.LEARNING_RATE,
            global_step=global_step,
            decay_steps=CFG.TRAIN.EPOCHS,
            power=0.9)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            optimizer = tf.train.MomentumOptimizer(
                learning_rate=learning_rate,
                momentum=CFG.TRAIN.MOMENTUM).minimize(
                    loss=train_total_loss,
                    var_list=tf.trainable_variables(),
                    global_step=global_step)

    # Set tf model save path
    model_save_dir = 'model/tusimple_lanenet_{:s}'.format(net_flag)
    if not ops.exists(model_save_dir):
        os.makedirs(model_save_dir)
    train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S',
                                     time.localtime(time.time()))
    model_name = 'tusimple_lanenet_{:s}_{:s}.ckpt'.format(
        net_flag, str(train_start_time))
    model_save_path = ops.join(model_save_dir, model_name)
    saver = tf.train.Saver()

    # Set tf summary save path
    tboard_save_path = 'tboard/tusimple_lanenet_{:s}'.format(net_flag)
    if not ops.exists(tboard_save_path):
        os.makedirs(tboard_save_path)

    # Set sess configuration
    sess_config = tf.ConfigProto(allow_soft_placement=True)
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    summary_writer = tf.summary.FileWriter(tboard_save_path)
    summary_writer.add_graph(sess.graph)

    # Set the training parameters
    train_epochs = CFG.TRAIN.EPOCHS

    log.info('Global configuration is as follows:')
    log.info(CFG)

    with sess.as_default():

        if weights_path is None:
            log.info('Training from scratch')
            init = tf.global_variables_initializer()
            sess.run(init)
        else:
            log.info('Restore model from last model checkpoint {:s}'.format(
                weights_path))
            saver.restore(sess=sess, save_path=weights_path)

        if net_flag == 'vgg' and weights_path is None:
            load_pretrained_weights(tf.trainable_variables(),
                                    './data/vgg16.npy', sess)

        train_cost_time_mean = []
        for epoch in range(train_epochs):
            # training part
            t_start = time.time()

            _, train_c, train_accuracy_figure, train_fn_figure, train_fp_figure, lr, train_summary, train_binary_loss, \
            train_instance_loss, train_embeddings, train_binary_seg_imgs, train_gt_imgs, \
            train_binary_gt_labels, train_instance_gt_labels = \
                sess.run([optimizer, train_total_loss, train_accuracy, train_fn, train_fp,
                          learning_rate, train_merge_summary_op, train_binary_seg_loss,
                          train_disc_loss, train_pix_embedding, train_prediction,
                          train_images, train_binary_labels, train_instance_labels])

            if math.isnan(train_c) or math.isnan(
                    train_binary_loss) or math.isnan(train_instance_loss):
                log.error('cost is: {:.5f}'.format(train_c))
                log.error('binary cost is: {:.5f}'.format(train_binary_loss))
                log.error(
                    'instance cost is: {:.5f}'.format(train_instance_loss))
                return

            if epoch % 100 == 0:
                record_training_intermediate_result(
                    gt_images=train_gt_imgs,
                    gt_binary_labels=train_binary_gt_labels,
                    gt_instance_labels=train_instance_gt_labels,
                    binary_seg_images=train_binary_seg_imgs,
                    pix_embeddings=train_embeddings)
            summary_writer.add_summary(summary=train_summary,
                                       global_step=epoch)

            if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
                log.info(
                    'Epoch: {:d} total_loss= {:6f} binary_seg_loss= {:6f} '
                    'instance_seg_loss= {:6f} accuracy= {:6f} fp= {:6f} fn= {:6f}'
                    ' lr= {:6f} mean_cost_time= {:5f}s '.format(
                        epoch + 1, train_c, train_binary_loss,
                        train_instance_loss, train_accuracy_figure,
                        train_fp_figure, train_fn_figure, lr,
                        np.mean(train_cost_time_mean)))
                del train_cost_time_mean[:]

            # validation part
            val_c, val_accuracy_figure, val_fn_figure, val_fp_figure, val_summary, val_binary_loss, \
            val_instance_loss, val_embeddings, val_binary_seg_imgs, val_gt_imgs, \
            val_binary_gt_labels, val_instance_gt_labels = \
                sess.run([val_total_loss, val_accuracy, val_fn, val_fp,
                          val_merge_summary_op, val_binary_seg_loss,
                          val_disc_loss, val_pix_embedding, val_prediction,
                          val_images, val_binary_labels, val_instance_labels])

            if math.isnan(val_c) or math.isnan(val_binary_loss) or math.isnan(
                    val_instance_loss):
                log.error('cost is: {:.5f}'.format(val_c))
                log.error('binary cost is: {:.5f}'.format(val_binary_loss))
                log.error('instance cost is: {:.5f}'.format(val_instance_loss))
                return

            if epoch % 100 == 0:
                record_training_intermediate_result(
                    gt_images=val_gt_imgs,
                    gt_binary_labels=val_binary_gt_labels,
                    gt_instance_labels=val_instance_gt_labels,
                    binary_seg_images=val_binary_seg_imgs,
                    pix_embeddings=val_embeddings,
                    flag='val')

            cost_time = time.time() - t_start
            train_cost_time_mean.append(cost_time)
            summary_writer.add_summary(summary=val_summary, global_step=epoch)

            if epoch % CFG.TRAIN.VAL_DISPLAY_STEP == 0:
                log.info(
                    'Epoch_Val: {:d} total_loss= {:6f} binary_seg_loss= {:6f} '
                    'instance_seg_loss= {:6f} accuracy= {:6f} fp= {:6f} fn= {:6f}'
                    ' mean_cost_time= {:5f}s '.format(
                        epoch + 1, val_c, val_binary_loss, val_instance_loss,
                        val_accuracy_figure, val_fp_figure, val_fn_figure,
                        np.mean(train_cost_time_mean)))
                del train_cost_time_mean[:]

            if epoch % 2000 == 0:
                saver.save(sess=sess,
                           save_path=model_save_path,
                           global_step=global_step)

    return
Esempio n. 25
0
def train_lanenet_multi_gpu(dataset_dir, weights_path=None, net_flag='vgg'):
    """
    train lanenet with multi gpu
    :param dataset_dir:
    :param weights_path:
    :param net_flag:
    :return:
    """
    # set lanenet dataset
    train_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
        dataset_dir=dataset_dir, flags='train')
    val_dataset = lanenet_data_feed_pipline.LaneNetDataFeeder(
        dataset_dir=dataset_dir, flags='val')

    # set lanenet
    train_net = lanenet.LaneNet(net_flag=net_flag, phase='train', reuse=False)
    val_net = lanenet.LaneNet(net_flag=net_flag, phase='val', reuse=True)

    # set compute graph node
    train_images, train_binary_labels, train_instance_labels = train_dataset.inputs(
        CFG.TRAIN.BATCH_SIZE, 1)
    val_images, val_binary_labels, val_instance_labels = val_dataset.inputs(
        CFG.TRAIN.VAL_BATCH_SIZE, 1)

    # set average container
    tower_grads = []
    train_tower_loss = []
    val_tower_loss = []
    batchnorm_updates = None
    train_summary_op_updates = None

    # set lr
    global_step = tf.Variable(0, trainable=False)
    learning_rate = tf.train.polynomial_decay(
        learning_rate=CFG.TRAIN.LEARNING_RATE,
        global_step=global_step,
        decay_steps=CFG.TRAIN.EPOCHS,
        power=0.9)

    # set optimizer
    optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                           momentum=CFG.TRAIN.MOMENTUM)

    # set distributed train op
    with tf.variable_scope(tf.get_variable_scope()):
        for i in range(CFG.TRAIN.GPU_NUM):
            with tf.device('/gpu:{:d}'.format(i)):
                with tf.name_scope('tower_{:d}'.format(i)) as _:
                    train_loss, grads = compute_net_gradients(
                        train_images, train_binary_labels,
                        train_instance_labels, train_net, optimizer)

                    # Only use the mean and var in the first gpu tower to update the parameter
                    if i == 0:
                        batchnorm_updates = tf.get_collection(
                            tf.GraphKeys.UPDATE_OPS)
                        train_summary_op_updates = tf.get_collection(
                            tf.GraphKeys.SUMMARIES)
                    tower_grads.append(grads)
                    train_tower_loss.append(train_loss)

                with tf.name_scope('validation_{:d}'.format(i)) as _:
                    val_loss, _ = compute_net_gradients(
                        val_images, val_binary_labels, val_instance_labels,
                        val_net, optimizer)
                    val_tower_loss.append(val_loss)

    grads = average_gradients(tower_grads)
    avg_train_loss = tf.reduce_mean(train_tower_loss)
    avg_val_loss = tf.reduce_mean(val_tower_loss)

    # Track the moving averages of all trainable variables
    variable_averages = tf.train.ExponentialMovingAverage(
        CFG.TRAIN.MOVING_AVERAGE_DECAY, num_updates=global_step)
    variables_to_average = tf.trainable_variables(
    ) + tf.moving_average_variables()
    variables_averages_op = variable_averages.apply(variables_to_average)

    # Group all the op needed for training
    batchnorm_updates_op = tf.group(*batchnorm_updates)
    apply_gradient_op = optimizer.apply_gradients(grads,
                                                  global_step=global_step)
    train_op = tf.group(apply_gradient_op, variables_averages_op,
                        batchnorm_updates_op)

    # Set tf summary save path
    tboard_save_path = 'tboard/tusimple_lanenet_multi_gpu_{:s}'.format(
        net_flag)
    if not os.path.exists(tboard_save_path):
        os.makedirs(tboard_save_path)

    summary_writer = tf.summary.FileWriter(tboard_save_path)

    avg_train_loss_scalar = tf.summary.scalar(name='average_train_loss',
                                              tensor=avg_train_loss)
    avg_val_loss_scalar = tf.summary.scalar(name='average_val_loss',
                                            tensor=avg_val_loss)
    learning_rate_scalar = tf.summary.scalar(name='learning_rate_scalar',
                                             tensor=learning_rate)

    train_merge_summary_op = tf.summary.merge(
        [avg_train_loss_scalar, learning_rate_scalar] +
        train_summary_op_updates)
    val_merge_summary_op = tf.summary.merge([avg_val_loss_scalar])

    # set tensorflow saver
    saver = tf.train.Saver()
    model_save_dir = 'model/tusimple_lanenet_multi_gpu_{:s}'.format(net_flag)
    if not os.path.exists(model_save_dir):
        os.makedirs(model_save_dir)
    train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S',
                                     time.localtime(time.time()))
    model_name = 'tusimple_lanenet_{:s}_{:s}.ckpt'.format(
        net_flag, str(train_start_time))
    model_save_path = ops.join(model_save_dir, model_name)

    # set sess config
    sess_config = tf.ConfigProto(device_count={'GPU': CFG.TRAIN.GPU_NUM},
                                 allow_soft_placement=True)
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    # Set the training parameters
    train_epochs = CFG.TRAIN.EPOCHS

    log.info('Global configuration is as follows:')
    log.info(CFG)

    sess = tf.Session(config=sess_config)

    summary_writer.add_graph(sess.graph)

    with sess.as_default():

        tf.train.write_graph(
            graph_or_graph_def=sess.graph,
            logdir='',
            name='{:s}/lanenet_model.pb'.format(model_save_dir))

        if weights_path is None:
            log.info('Training from scratch')
            init = tf.global_variables_initializer()
            sess.run(init)
        else:
            log.info('Restore model from last model checkpoint {:s}'.format(
                weights_path))
            saver.restore(sess=sess, save_path=weights_path)

        train_cost_time_mean = []
        val_cost_time_mean = []

        for epoch in range(train_epochs):

            # training part
            t_start = time.time()

            _, train_loss_value, train_summary, lr = \
                sess.run(
                    fetches=[train_op, avg_train_loss,
                             train_merge_summary_op, learning_rate]
                )

            if math.isnan(train_loss_value):
                log.error('Train loss is nan')
                return

            cost_time = time.time() - t_start
            train_cost_time_mean.append(cost_time)

            summary_writer.add_summary(summary=train_summary,
                                       global_step=epoch)

            # validation part
            t_start_val = time.time()

            val_loss_value, val_summary = \
                sess.run(fetches=[avg_val_loss, val_merge_summary_op])

            summary_writer.add_summary(val_summary, global_step=epoch)

            cost_time_val = time.time() - t_start_val
            val_cost_time_mean.append(cost_time_val)

            if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
                log.info('Epoch_Train: {:d} total_loss= {:6f} '
                         'lr= {:6f} mean_cost_time= {:5f}s '.format(
                             epoch + 1, train_loss_value, lr,
                             np.mean(train_cost_time_mean)))
                del train_cost_time_mean[:]

            if epoch % CFG.TRAIN.VAL_DISPLAY_STEP == 0:
                log.info('Epoch_Val: {:d} total_loss= {:6f}'
                         ' mean_cost_time= {:5f}s '.format(
                             epoch + 1, val_loss_value,
                             np.mean(val_cost_time_mean)))
                del val_cost_time_mean[:]

            if epoch % 2000 == 0:
                saver.save(sess=sess,
                           save_path=model_save_path,
                           global_step=epoch)
    return
def train_lanenet(weights_path=None,
                  net_flag='vgg',
                  version_flag='',
                  scratch=False):
    """
    :param weights_path:
    :param net_flag: choose which base network to use
    :param version_flag: exp flag
    :return:
    """
    # ========================== placeholder ========================= #
    with tf.name_scope('train_input'):
        train_input_tensor = tf.placeholder(dtype=tf.float32,
                                            name='input_image',
                                            shape=[None, None, None, 3])
        train_binary_label_tensor = tf.placeholder(dtype=tf.float32,
                                                   name='binary_input_label',
                                                   shape=[None, None, None, 1])
        train_instance_label_tensor = tf.placeholder(
            dtype=tf.float32,
            name='instance_input_label',
            shape=[None, None, None, 1])

    with tf.name_scope('val_input'):
        val_input_tensor = tf.placeholder(dtype=tf.float32,
                                          name='input_image',
                                          shape=[None, None, None, 3])
        val_binary_label_tensor = tf.placeholder(dtype=tf.float32,
                                                 name='binary_input_label',
                                                 shape=[None, None, None, 1])
        val_instance_label_tensor = tf.placeholder(dtype=tf.float32,
                                                   name='instance_input_label',
                                                   shape=[None, None, None, 1])

    # ================================================================ #
    #                           Define Network                         #
    # ================================================================ #
    train_net = lanenet.LaneNet(net_flag=net_flag,
                                phase='train',
                                reuse=tf.AUTO_REUSE)
    val_net = lanenet.LaneNet(net_flag=net_flag, phase='val', reuse=True)
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                       Train Input & Output                       #
    # ================================================================ #
    trainset = DataSet('train')
    # trainset = MergeDataSet('train_lane')
    train_compute_ret = train_net.compute_loss(
        input_tensor=train_input_tensor,
        binary_label=train_binary_label_tensor,
        instance_label=train_instance_label_tensor,
        name='lanenet_model')
    train_total_loss = train_compute_ret['total_loss']
    train_binary_seg_loss = train_compute_ret['binary_seg_loss']  # 语义分割 loss
    train_disc_loss = train_compute_ret[
        'discriminative_loss']  # embedding loss
    train_pix_embedding = train_compute_ret[
        'instance_seg_logits']  # embedding feature, HxWxN
    train_l2_reg_loss = train_compute_ret['l2_reg_loss']

    train_prediction_logits = train_compute_ret[
        'binary_seg_logits']  # 语义分割结果,HxWx2
    train_prediction_score = tf.nn.softmax(logits=train_prediction_logits)
    train_prediction = tf.argmax(train_prediction_score, axis=-1)  # 语义分割二值图

    train_accuracy = evaluate_model_utils.calculate_model_precision(
        train_compute_ret['binary_seg_logits'], train_binary_label_tensor)
    train_fp = evaluate_model_utils.calculate_model_fp(
        train_compute_ret['binary_seg_logits'], train_binary_label_tensor)
    train_fn = evaluate_model_utils.calculate_model_fn(
        train_compute_ret['binary_seg_logits'], train_binary_label_tensor)
    train_binary_seg_ret_for_summary = evaluate_model_utils.get_image_summary(
        img=train_prediction)  # (I - min) * 255 / (max -min), 归一化到0-255
    train_embedding_ret_for_summary = evaluate_model_utils.get_image_summary(
        img=train_pix_embedding)  # (I - min) * 255 / (max -min), 归一化到0-255
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                          Define Optimizer                        #
    # ================================================================ #
    # set optimizer
    global_step = tf.Variable(0, trainable=False, name='global_step')
    # learning_rate = tf.train.cosine_decay_restarts( # 余弦衰减
    #     learning_rate=cfg.TRAIN.LEARNING_RATE,      # 初始学习率
    #     global_step=global_step,                    # 当前迭代次数
    #     first_decay_steps=cfg.TRAIN.STEPS/3,        # 首次衰减周期
    #     t_mul=2.0,                                  # 随后每次衰减周期倍数
    #     m_mul=1.0,                                  # 随后每次初始学习率倍数
    #     alpha = 0.1,                                # 最小的学习率=alpha*learning_rate
    # )
    learning_rate = tf.train.polynomial_decay(  # 多项式衰减
        learning_rate=cfg.TRAIN.LEARNING_RATE,  # 初始学习率
        global_step=global_step,  # 当前迭代次数
        decay_steps=cfg.TRAIN.STEPS /
        4,  # 在迭代到该次数实际,学习率衰减为 learning_rate * dacay_rate
        end_learning_rate=cfg.TRAIN.LEARNING_RATE / 10,  # 最小的学习率
        power=0.9,
        cycle=True)
    learning_rate_scalar = tf.summary.scalar(name='learning_rate',
                                             tensor=learning_rate)
    update_ops = tf.get_collection(
        tf.GraphKeys.UPDATE_OPS)  # for batch normalization
    with tf.control_dependencies(update_ops):
        optimizer = tf.train.MomentumOptimizer(
            learning_rate=learning_rate, momentum=cfg.TRAIN.MOMENTUM).minimize(
                loss=train_total_loss,
                var_list=tf.trainable_variables(),
                global_step=global_step)
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                           Train Summary                          #
    # ================================================================ #
    train_loss_scalar = tf.summary.scalar(name='train_cost',
                                          tensor=train_total_loss)
    train_accuracy_scalar = tf.summary.scalar(name='train_accuracy',
                                              tensor=train_accuracy)
    train_binary_seg_loss_scalar = tf.summary.scalar(
        name='train_binary_seg_loss', tensor=train_binary_seg_loss)
    train_instance_seg_loss_scalar = tf.summary.scalar(
        name='train_instance_seg_loss', tensor=train_disc_loss)
    train_fn_scalar = tf.summary.scalar(name='train_fn', tensor=train_fn)
    train_fp_scalar = tf.summary.scalar(name='train_fp', tensor=train_fp)
    train_binary_seg_ret_img = tf.summary.image(
        name='train_binary_seg_ret', tensor=train_binary_seg_ret_for_summary)
    train_embedding_feats_ret_img = tf.summary.image(
        name='train_embedding_feats_ret',
        tensor=train_embedding_ret_for_summary)
    train_merge_summary_op = tf.summary.merge([
        train_accuracy_scalar, train_loss_scalar, train_binary_seg_loss_scalar,
        train_instance_seg_loss_scalar, train_fn_scalar, train_fp_scalar,
        train_binary_seg_ret_img, train_embedding_feats_ret_img,
        learning_rate_scalar
    ])
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                        Val Input & Output                        #
    # ================================================================ #
    valset = DataSet('val', net_flag)
    # valset = MergeDataSet('test_lane')
    val_compute_ret = val_net.compute_loss(
        input_tensor=val_input_tensor,
        binary_label=val_binary_label_tensor,
        instance_label=val_instance_label_tensor,
        name='lanenet_model')
    val_total_loss = val_compute_ret['total_loss']
    val_binary_seg_loss = val_compute_ret['binary_seg_loss']
    val_disc_loss = val_compute_ret['discriminative_loss']
    val_pix_embedding = val_compute_ret['instance_seg_logits']

    val_prediction_logits = val_compute_ret['binary_seg_logits']
    val_prediction_score = tf.nn.softmax(logits=val_prediction_logits)
    val_prediction = tf.argmax(val_prediction_score, axis=-1)

    val_accuracy = evaluate_model_utils.calculate_model_precision(
        val_compute_ret['binary_seg_logits'], val_binary_label_tensor)
    val_fp = evaluate_model_utils.calculate_model_fp(
        val_compute_ret['binary_seg_logits'], val_binary_label_tensor)
    val_fn = evaluate_model_utils.calculate_model_fn(
        val_compute_ret['binary_seg_logits'], val_binary_label_tensor)
    val_binary_seg_ret_for_summary = evaluate_model_utils.get_image_summary(
        img=val_prediction)
    val_embedding_ret_for_summary = evaluate_model_utils.get_image_summary(
        img=val_pix_embedding)
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                            VAL Summary                           #
    # ================================================================ #
    val_loss_scalar = tf.summary.scalar(name='val_cost', tensor=val_total_loss)
    val_accuracy_scalar = tf.summary.scalar(name='val_accuracy',
                                            tensor=val_accuracy)
    val_binary_seg_loss_scalar = tf.summary.scalar(name='val_binary_seg_loss',
                                                   tensor=val_binary_seg_loss)
    val_instance_seg_loss_scalar = tf.summary.scalar(
        name='val_instance_seg_loss', tensor=val_disc_loss)
    val_fn_scalar = tf.summary.scalar(name='val_fn', tensor=val_fn)
    val_fp_scalar = tf.summary.scalar(name='val_fp', tensor=val_fp)
    val_binary_seg_ret_img = tf.summary.image(
        name='val_binary_seg_ret', tensor=val_binary_seg_ret_for_summary)
    val_embedding_feats_ret_img = tf.summary.image(
        name='val_embedding_feats_ret', tensor=val_embedding_ret_for_summary)
    val_merge_summary_op = tf.summary.merge([
        val_accuracy_scalar, val_loss_scalar, val_binary_seg_loss_scalar,
        val_instance_seg_loss_scalar, val_fn_scalar, val_fp_scalar,
        val_binary_seg_ret_img, val_embedding_feats_ret_img
    ])
    # ---------------------------------------------------------------- #

    # ================================================================ #
    #                      Config Saver & Session                      #
    # ================================================================ #
    # Set tf model save path
    model_save_dir = 'model/tusimple_lanenet_{:s}_{:s}'.format(
        net_flag, version_flag)
    os.makedirs(model_save_dir, exist_ok=True)
    train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S',
                                     time.localtime(time.time()))
    model_name = 'tusimple_lanenet_{:s}_{:s}.ckpt'.format(
        net_flag, str(train_start_time))
    model_save_path = ops.join(model_save_dir, model_name)

    # ==============================
    if scratch:
        """
        删除 Momentum 的参数, 注意这里保存的 meta 文件也会删了
        tensorflow 在 save model 的时候,如果选择了 global_step 选项,会 global_step 值也保存下来,
        然后 restore 的时候也就会接着这个 global_step 继续训练下去,因此需要去掉
        """
        variables = tf.contrib.framework.get_variables_to_restore()
        variables_to_resotre = [
            v for v in variables if 'Momentum' not in v.name.split('/')[-1]
        ]
        variables_to_resotre = [
            v for v in variables_to_resotre
            if 'global_step' not in v.name.split('/')[-1]
        ]  # remove global step
        restore_saver = tf.train.Saver(variables_to_resotre)
    else:
        restore_saver = tf.train.Saver()
    saver = tf.train.Saver(max_to_keep=10)
    # ==============================

    # Set tf summary save path
    tboard_save_path = 'tboard/tusimple_lanenet_{:s}_{:s}'.format(
        net_flag, version_flag)
    os.makedirs(tboard_save_path, exist_ok=True)

    # Set sess configuration
    # ============================== config GPU
    sess_config = tf.ConfigProto(allow_soft_placement=True)
    # sess_config.gpu_options.per_process_gpu_memory_fraction = cfg.TRAIN.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = cfg.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'
    # ==============================
    sess = tf.Session(config=sess_config)

    summary_writer = tf.summary.FileWriter(tboard_save_path)
    summary_writer.add_graph(sess.graph)
    # ---------------------------------------------------------------- #

    # Set the training parameters
    import math
    one_epoch2step = math.ceil(cfg.TRAIN.TRAIN_SIZE /
                               cfg.TRAIN.BATCH_SIZE)  # 训练一个 epoch 需要的 batch 数量
    total_epoch = math.ceil(cfg.TRAIN.STEPS / one_epoch2step)  # 一共需要训练多少 epoch

    log.info('Global configuration is as follows:')
    log.info(cfg)
    max_acc = 0.9
    save_num = 0
    val_step = 0
    # ================================================================ #
    #                            Train & Val                           #
    # ================================================================ #
    with sess.as_default():
        # ============================== load pretrain model
        # if weights_path is None:
        #     log.info('Training from scratch')
        #     sess.run(tf.global_variables_initializer())
        # elif net_flag == 'vgg' and weights_path is None:
        #     load_pretrained_weights(tf.trainable_variables(), './data/vgg16.npy', sess)
        # elif scratch: # 从头开始训练,类似 Caffe 的 --weights
        #     sess.run(tf.global_variables_initializer())
        #     log.info('Restore model from last model checkpoint {:s}, scratch'.format(weights_path))
        #     try:
        #         restore_saver.restore(sess=sess, save_path=weights_path)
        #     except:
        #         log.info('model maybe is not exist!')
        # else: # 继续训练,类似 Caffe 的 --snapshot
        #     log.info('Restore model from last model checkpoint {:s}'.format(weights_path))
        #     try:
        #         restore_saver.restore(sess=sess, save_path=weights_path)
        #     except:
        #         log.info('model maybe is not exist!')
        sess.run(tf.global_variables_initializer())
        # ==============================
        for epoch in range(total_epoch):
            # ================================================================ #
            #                               Train                              #
            # ================================================================ #
            train_epoch_loss = []
            pbar_train = tqdm(trainset)
            train_t_start = time.time()
            for gt_imgs, binary_gt_labels, instance_gt_labels in pbar_train:
                _, global_step_val, train_loss, train_accuracy_figure, train_fn_figure, train_fp_figure, \
                lr, train_summary, train_binary_loss, train_instance_loss, \
                train_embeddings, train_binary_seg_imgs, train_l2_loss = \
                    sess.run([optimizer, global_step, train_total_loss, train_accuracy, train_fn, train_fp,
                              learning_rate, train_merge_summary_op, train_binary_seg_loss,
                              train_disc_loss, train_pix_embedding, train_prediction, train_l2_reg_loss],
                             feed_dict={train_input_tensor: gt_imgs,
                                        train_binary_label_tensor: binary_gt_labels,
                                        train_instance_label_tensor: instance_gt_labels}
                             )
                # ============================== 透心凉,心飞扬
                if math.isnan(train_loss) or math.isnan(
                        train_binary_loss) or math.isnan(train_instance_loss):
                    log.error('cost is: {:.5f}'.format(train_loss))
                    log.error(
                        'binary cost is: {:.5f}'.format(train_binary_loss))
                    log.error(
                        'instance cost is: {:.5f}'.format(train_instance_loss))
                    return
                # ==============================
                train_epoch_loss.append(train_loss)
                summary_writer.add_summary(summary=train_summary,
                                           global_step=global_step_val)
                pbar_train.set_description(
                    ("train loss: %.4f, learn rate: %e") % (train_loss, lr))
            train_cost_time = time.time() - train_t_start
            mean_train_loss = np.mean(train_epoch_loss)
            log.info(
                'MEAN Train: total_loss= {:6f} mean_cost_time= {:5f}s'.format(
                    mean_train_loss, train_cost_time))
            # ---------------------------------------------------------------- #

            # ================================================================ #
            #                                Val                               #
            # ================================================================ #
            # 每隔 epoch 次,测试整个验证集
            pbar_val = tqdm(valset)
            val_epoch_loss = []
            val_epoch_binary_loss = []
            val_epoch_instance_loss = []
            val_epoch_accuracy_figure = []
            val_epoch_fp_figure = []
            val_epoch_fn_figure = []
            val_t_start = time.time()
            for val_images, val_binary_labels, val_instance_labels in pbar_val:
                # validation part
                val_step += 1
                val_summary, \
                val_loss, val_binary_loss, val_instance_loss, \
                val_accuracy_figure, val_fn_figure, val_fp_figure = \
                    sess.run([val_merge_summary_op,
                              val_total_loss, val_binary_seg_loss, val_disc_loss,
                              val_accuracy, val_fn, val_fp],
                             feed_dict={val_input_tensor: val_images,
                                        val_binary_label_tensor: val_binary_labels,
                                        val_instance_label_tensor: val_instance_labels}
                             )
                # ============================== 透心凉,心飞扬
                if math.isnan(val_loss) or math.isnan(
                        val_binary_loss) or math.isnan(val_instance_loss):
                    log.error('cost is: {:.5f}'.format(val_loss))
                    log.error('binary cost is: {:.5f}'.format(val_binary_loss))
                    log.error(
                        'instance cost is: {:.5f}'.format(val_instance_loss))
                    return
                # ==============================
                summary_writer.add_summary(summary=val_summary,
                                           global_step=val_step)
                pbar_val.set_description(("val loss: %.4f, accuracy: %.4f") %
                                         (val_loss, val_accuracy_figure))

                val_epoch_loss.append(val_loss)
                val_epoch_binary_loss.append(val_binary_loss)
                val_epoch_instance_loss.append(val_instance_loss)
                val_epoch_accuracy_figure.append(val_accuracy_figure)
                val_epoch_fp_figure.append(val_fp_figure)
                val_epoch_fn_figure.append(val_fn_figure)
            val_cost_time = time.time() - val_t_start
            mean_val_loss = np.mean(val_epoch_loss)
            mean_val_binary_loss = np.mean(val_epoch_binary_loss)
            mean_val_instance_loss = np.mean(val_epoch_instance_loss)
            mean_val_accuracy_figure = np.mean(val_epoch_accuracy_figure)
            mean_val_fp_figure = np.mean(val_epoch_fp_figure)
            mean_val_fn_figure = np.mean(val_epoch_fn_figure)

            # ==============================
            if mean_val_accuracy_figure > max_acc:
                max_acc = mean_val_accuracy_figure
                if save_num < 3:  # 前三次不算
                    max_acc = 0.9
                log.info(
                    'MAX_ACC change to {}'.format(mean_val_accuracy_figure))
                model_save_path_max = ops.join(
                    model_save_dir, 'tusimple_lanenet_{}.ckpt'.format(
                        mean_val_accuracy_figure))
                saver.save(sess=sess,
                           save_path=model_save_path_max,
                           global_step=global_step)
                save_num += 1
            # ==============================

            log.info(
                '=> Epoch: {}, MEAN Val: total_loss= {:6f} binary_seg_loss= {:6f} '
                'instance_seg_loss= {:6f} accuracy= {:6f} fp= {:6f} fn= {:6f}'
                ' mean_cost_time= {:5f}s '.format(
                    epoch, mean_val_loss, mean_val_binary_loss,
                    mean_val_instance_loss, mean_val_accuracy_figure,
                    mean_val_fp_figure, mean_val_fn_figure, val_cost_time))
            # ---------------------------------------------------------------- #
    return
def test_lanenet(image_path, weights_path):
    """

    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(image_path), '{:s} not exist'.format(image_path)

    LOG.info('Start reading image and preprocessing')
    t_start = time.time()
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image_vis = image
    image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
    image = image / 127.5 - 1.0
    LOG.info('Image load complete, cost time: {:.5f}s'.format(time.time() -
                                                              t_start))

    tf.compat.v1.disable_eager_execution()
    input_tensor = tf.compat.v1.placeholder(dtype=tf.float32,
                                            shape=[1, 256, 512, 3],
                                            name='input_tensor')

    net = lanenet.LaneNet(phase='test', cfg=CFG)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='LaneNet')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor(cfg=CFG)

    # Set sess configuration
    sess_config = tf.compat.v1.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.compat.v1.Session(config=sess_config)

    # define moving average version of the learned variables for eval
    with tf.compat.v1.variable_scope(name_or_scope='moving_avg'):
        variable_averages = tf.train.ExponentialMovingAverage(
            CFG.SOLVER.MOVING_AVE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()

    # define saver
    saver = tf.compat.v1.train.Saver(variables_to_restore)

    with sess.as_default():
        saver.restore(sess=sess, save_path=weights_path)

        t_start = time.time()
        loop_times = 500
        for i in range(loop_times):
            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]})
        t_cost = time.time() - t_start
        t_cost /= loop_times
        LOG.info('Single imgae inference cost time: {:.5f}s'.format(t_cost))

        postprocess_result = postprocessor.postprocess(
            binary_seg_result=binary_seg_image[0],
            instance_seg_result=instance_seg_image[0],
            source_image=image_vis)
        mask_image = postprocess_result['mask_image']

        for i in range(CFG.MODEL.EMBEDDING_FEATS_DIMS):
            instance_seg_image[0][:, :,
                                  i] = minmax_scale(instance_seg_image[0][:, :,
                                                                          i])
        embedding_image = np.array(instance_seg_image[0], np.uint8)

        plt.figure('mask_image')
        plt.imshow(mask_image[:, :, (2, 1, 0)])
        plt.savefig(fname="results/mask.png")

        plt.figure('src_image')
        plt.imshow(image_vis[:, :, (2, 1, 0)])
        plt.savefig(fname="results/src.png")

        plt.figure('instance_image')
        plt.imshow(embedding_image[:, :, (2, 1, 0)])
        plt.savefig(fname="results/instance.png")

        plt.figure('binary_image')
        plt.imshow(binary_seg_image[0] * 255, cmap='gray')
        plt.savefig(fname="results/binary.png")

    sess.close()

    return
Esempio n. 28
0
def custom_test_lanenet(src_dir , weights_path, save_dir):
    """

    :param src_dir:
    :param weights_path:
    :param save_dir:
    :return:
    """
    assert ops.exists(src_dir), '{:s} not exist'.format(src_dir)

    os.makedirs(save_dir, exist_ok=True)

    input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 256, 512, 3], name='input_tensor')

    net = lanenet.LaneNet(phase='test', cfg=CFG)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor, name='LaneNet')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor(cfg=CFG)

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():
        save_img_lane_dict = {}
        saver.restore(sess=sess, save_path=weights_path)
        img_names = os.listdir(src_dir)

        image_list = [os.path.join(src_dir,i) for i in img_names]
        avg_time_cost = []
        for index, image_path in tqdm.tqdm(enumerate(image_list), total=len(image_list)):

            image = cv2.imread(image_path, cv2.IMREAD_COLOR)
            image_vis = image
            image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0

            t_start = time.time()
            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]}
            )
            avg_time_cost.append(time.time() - t_start)

            postprocess_result = postprocessor.postprocess(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis
            )
            lanes = postprocess_result['lane_points_on_img']
            
            if index % 100 == 0:
                LOG.info('Mean inference time every single image: {:.5f}s'.format(np.mean(avg_time_cost)))
                avg_time_cost.clear()

            input_image_dir = src_dir
            input_image_name = ops.split(image_path)[-1]
            output_image_dir = save_dir
            os.makedirs(output_image_dir, exist_ok=True)
            output_image_path = ops.join(output_image_dir, input_image_name)
            # if ops.exists(output_image_path):
            #     continue
            save_img_lane_dict[input_image_name] = lanes
            cv2.imwrite(output_image_path, postprocess_result['source_image'])
    output_json_name = os.path.join(save_dir,'img_lane_points.json')
    with open(output_json_name, 'w') as fp:
        json.dump(save_img_lane_dict, fp)
    return
Esempio n. 29
0
def test_lanenet(image_path, weights_path):
    """
    :param image_path:
    :param weights_path:
    :return:
    """
    assert ops.exists(image_path), '{:s} not exist'.format(image_path)

    log.info('Start reading image and preprocessing')
    t_start = time.time()
    image = cv2.imread(image_path, cv2.IMREAD_COLOR)
    image_vis = image
    image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
    image = image / 127.5 - 1.0
    log.info('Image load complete, cost time: {:.5f}s'.format(time.time() -
                                                              t_start))

    input_tensor = tf.placeholder(dtype=tf.float32,
                                  shape=[1, 256, 512, 3],
                                  name='input_tensor')

    net = lanenet.LaneNet(phase='test', net_flag='vgg')
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor,
                                                     name='lanenet_model')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor()

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    with sess.as_default():

        saver.restore(sess=sess, save_path=weights_path)

        t_start = time.time()
        binary_seg_image, instance_seg_image = sess.run(
            [binary_seg_ret, instance_seg_ret],
            feed_dict={input_tensor: [image]})
        t_cost = time.time() - t_start
        log.info('Single imgae inference cost time: {:.5f}s'.format(t_cost))

        postprocess_result = postprocessor.postprocess(
            binary_seg_result=binary_seg_image[0],
            instance_seg_result=instance_seg_image[0],
            source_image=image_vis)
        mask_image = postprocess_result['mask_image']

        for i in range(CFG.TRAIN.EMBEDDING_FEATS_DIMS):
            instance_seg_image[0][:, :,
                                  i] = minmax_scale(instance_seg_image[0][:, :,
                                                                          i])
        embedding_image = np.array(instance_seg_image[0], np.uint8)

        plt.figure('mask_image')
        plt.imshow(mask_image[:, :, (2, 1, 0)])
        plt.figure('src_image')
        plt.imshow(image_vis[:, :, (2, 1, 0)])
        plt.figure('instance_image')
        plt.imshow(embedding_image[:, :, (2, 1, 0)])
        plt.figure('binary_image')
        plt.imshow(binary_seg_image[0] * 255, cmap='gray')
        plt.show()

        cv2.imwrite('instance_mask_image.png', mask_image)
        cv2.imwrite('source_image.png', postprocess_result['source_image'])
        cv2.imwrite('binary_mask_image.png', binary_seg_image[0] * 255)

    sess.close()

    return
Esempio n. 30
0
def custom_test_lanenet_video(src_dir , weights_path, save_dir):
    """

    :param src_dir:
    :param weights_path:
    :param save_dir:
    :return:
    """
    assert ops.exists(src_dir), '{:s} not exist'.format(src_dir)

    os.makedirs(save_dir, exist_ok=True)

    input_tensor = tf.placeholder(dtype=tf.float32, shape=[1, 256, 512, 3], name='input_tensor')

    net = lanenet.LaneNet(phase='test', cfg=CFG)
    binary_seg_ret, instance_seg_ret = net.inference(input_tensor=input_tensor, name='LaneNet')

    postprocessor = lanenet_postprocess.LaneNetPostProcessor(cfg=CFG)

    saver = tf.train.Saver()

    # Set sess configuration
    sess_config = tf.ConfigProto()
    sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.GPU.GPU_MEMORY_FRACTION
    sess_config.gpu_options.allow_growth = CFG.GPU.TF_ALLOW_GROWTH
    sess_config.gpu_options.allocator_type = 'BFC'

    sess = tf.Session(config=sess_config)

    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    # out = cv2.VideoWriter('output.mp4', fourcc, 4.0, (640,480))
    out = cv2.VideoWriter(os.path.join(save_dir,'output.mp4'),0x7634706d, 4, (1280,720))
    with sess.as_default():
        save_img_lane_dict = {}
        saver.restore(sess=sess, save_path=weights_path)
        cap = cv2.VideoCapture(src_dir)

        avg_time_cost = []
        frame_id = 0
        while(True):
            ret, image = cap.read()
            frame_id+=1
            if not ret or frame_id>50:
                break
            image_vis = image
            image = cv2.resize(image, (512, 256), interpolation=cv2.INTER_LINEAR)
            image = image / 127.5 - 1.0

            t_start = time.time()
            binary_seg_image, instance_seg_image = sess.run(
                [binary_seg_ret, instance_seg_ret],
                feed_dict={input_tensor: [image]}
            )
            avg_time_cost.append(time.time() - t_start)

            postprocess_result = postprocessor.postprocess(
                binary_seg_result=binary_seg_image[0],
                instance_seg_result=instance_seg_image[0],
                source_image=image_vis
            )
            lanes = postprocess_result['lane_points_on_img']
            
            if frame_id % 100 == 0:
                LOG.info('Mean inference time every single image: {:.5f}s'.format(np.mean(avg_time_cost)))
                avg_time_cost.clear()

            output_image_dir = save_dir
            os.makedirs(output_image_dir, exist_ok=True)
            output_image_path = ops.join(output_image_dir, str(frame_id)+'.jpg')
            # if ops.exists(output_image_path):
            #     continue
            save_img_lane_dict[frame_id] = lanes
            cv2.imwrite(output_image_path, postprocess_result['source_image'])
            out.write(postprocess_result['source_image'])
    out.release()
    cap.release()
    output_json_name = os.path.join(save_dir,'img_lane_points.json')
    with open(output_json_name, 'w') as fp:
        json.dump(save_img_lane_dict, fp)
    return