Esempio n. 1
0
def stop_frequency_model(
    edb_directory="output/estimation_data_bundle/{name}/",
    return_data=False,
):
    data = stop_frequency_data(
        edb_directory=edb_directory,
        values_index_col="tour_id",
    )

    models = []

    for n in range(len(data.spec)):

        coefficients = data.coefficients
        # coef_template = data.coef_template # not used
        spec = data.spec[n]
        chooser_data = data.chooser_data[n]
        settings = data.settings

        alt_names = data.alt_names[n]
        alt_codes = data.alt_codes[n]

        from .general import clean_values
        chooser_data = clean_values(
            chooser_data,
            alt_names_to_codes=data.alt_names_to_codes[n],
            choice_code="override_choice_code",
        )

        if settings.get('LOGIT_TYPE') == 'NL':
            tree = construct_nesting_tree(data.alt_names[n], settings["NESTS"])
            m = Model(graph=tree)
        else:
            m = Model()

        m.utility_co = dict_of_linear_utility_from_spec(
            spec,
            "Label",
            dict(zip(alt_names, alt_codes)),
        )

        apply_coefficients(coefficients, m)

        avail = True

        d = DataFrames(
            co=chooser_data,
            av=avail,
            alt_codes=alt_codes,
            alt_names=alt_names,
        )

        m.dataservice = d
        m.choice_co_code = "override_choice_code"
        models.append(m)

    from larch.model.model_group import ModelGroup
    models = ModelGroup(models)

    if return_data:
        return (
            models,
            data,
        )

    return models
Esempio n. 2
0
def location_choice_model(
    name="workplace_location",
    edb_directory="output/estimation_data_bundle/{name}/",
    coefficients_file="{name}_coefficients.csv",
    spec_file="{name}_SPEC.csv",
    size_spec_file="{name}_size_terms.csv",
    alt_values_file="{name}_alternatives_combined.csv",
    chooser_file="{name}_choosers_combined.csv",
    settings_file="{name}_model_settings.yaml",
    landuse_file="{name}_landuse.csv",
    return_data=False,
):
    model_selector = name.replace("_location", "")
    model_selector = model_selector.replace("_destination", "")
    model_selector = model_selector.replace("_subtour", "")
    model_selector = model_selector.replace("_tour", "")
    if model_selector == 'joint':
        model_selector = 'non_mandatory'
    edb_directory = edb_directory.format(name=name)

    def _read_csv(filename, **kwargs):
        filename = filename.format(name=name)
        return pd.read_csv(os.path.join(edb_directory, filename), **kwargs)

    coefficients = _read_csv(
        coefficients_file,
        index_col="coefficient_name",
    )
    spec = _read_csv(spec_file, comment="#")
    alt_values = _read_csv(alt_values_file)
    chooser_data = _read_csv(chooser_file)
    landuse = _read_csv(landuse_file, index_col="zone_id")
    master_size_spec = _read_csv(size_spec_file)

    # remove temp rows from spec, ASim uses them to calculate the other values written
    # to the EDB, but they are not actually part of the utility function themselves.
    spec = spec.loc[~spec.Expression.isna()]
    spec = spec.loc[~spec.Expression.str.startswith("_")].copy()

    settings_file = settings_file.format(name=name)
    with open(os.path.join(edb_directory, settings_file), "r") as yf:
        settings = yaml.load(
            yf,
            Loader=yaml.SafeLoader,
        )

    include_settings = settings.get("include_settings")
    if include_settings:
        include_settings = os.path.join(edb_directory, include_settings)
    if include_settings and os.path.exists(include_settings):
        with open(include_settings, "r") as yf:
            more_settings = yaml.load(
                yf,
                Loader=yaml.SafeLoader,
            )
        settings.update(more_settings)

    CHOOSER_SEGMENT_COLUMN_NAME = settings.get("CHOOSER_SEGMENT_COLUMN_NAME")
    SEGMENT_IDS = settings.get("SEGMENT_IDS")
    if SEGMENT_IDS is None:
        SEGMENTS = settings.get("SEGMENTS")
        if SEGMENTS is not None:
            SEGMENT_IDS = {i: i for i in SEGMENTS}

    SIZE_TERM_SELECTOR = settings.get('SIZE_TERM_SELECTOR', model_selector)

    # filter size spec for this location choice only
    size_spec = (master_size_spec.query(
        f"model_selector == '{SIZE_TERM_SELECTOR}'").drop(
            columns="model_selector").set_index("segment"))
    size_spec = size_spec.loc[:, size_spec.max() > 0]

    size_coef = size_coefficients_from_spec(size_spec)

    indexes_to_drop = [
        "util_size_variable",  # pre-computed size (will be re-estimated)
        "util_size_variable_atwork",  # pre-computed size (will be re-estimated)
        "util_utility_adjustment",  # shadow pricing (ignored in estimation)
        "@df['size_term'].apply(np.log1p)",  # pre-computed size (will be re-estimated)
    ]
    if 'Label' in spec.columns:
        indexes_to_drop = [
            i for i in indexes_to_drop if i in spec.Label.to_numpy()
        ]
        label_column_name = 'Label'
    elif 'Expression' in spec.columns:
        indexes_to_drop = [
            i for i in indexes_to_drop if i in spec.Expression.to_numpy()
        ]
        label_column_name = 'Expression'
    else:
        raise ValueError("cannot find Label or Expression in spec file")

    expression_labels = None
    if label_column_name == 'Expression':
        expression_labels = {
            expr: f"variable_label{n:04d}"
            for n, expr in enumerate(spec.Expression.to_numpy())
        }

    # Remove shadow pricing and pre-existing size expression for re-estimation
    spec = (spec.set_index(label_column_name).drop(
        index=indexes_to_drop).reset_index())

    if label_column_name == 'Expression':
        spec.insert(0, "Label", spec['Expression'].map(expression_labels))
        alt_values['variable'] = alt_values['variable'].map(expression_labels)
        label_column_name = "Label"

    if name == 'trip_destination':
        CHOOSER_SEGMENT_COLUMN_NAME = 'primary_purpose'
        primary_purposes = spec.columns[3:]
        SEGMENT_IDS = {pp: pp for pp in primary_purposes}

    chooser_index_name = chooser_data.columns[0]
    x_co = chooser_data.set_index(chooser_index_name)
    x_ca = cv_to_ca(
        alt_values.set_index([chooser_index_name, alt_values.columns[1]]))

    if CHOOSER_SEGMENT_COLUMN_NAME is not None:
        # label segments with names
        SEGMENT_IDS_REVERSE = {v: k for k, v in SEGMENT_IDS.items()}
        x_co["_segment_label"] = x_co[CHOOSER_SEGMENT_COLUMN_NAME].apply(
            lambda x: SEGMENT_IDS_REVERSE[x])
    else:
        x_co["_segment_label"] = size_spec.index[0]

    # compute total size values by segment
    for segment in size_spec.index:
        total_size_segment = pd.Series(0, index=landuse.index)
        x_co["total_size_" + segment] = 0
        for land_use_field in size_spec.loc[segment].index:
            total_size_segment += (landuse[land_use_field] *
                                   size_spec.loc[segment, land_use_field])
        x_co["total_size_" + segment] = total_size_segment.loc[
            x_co["override_choice"]].to_numpy()

    # for each chooser, collate the appropriate total size value
    x_co["total_size_segment"] = 0
    for segment in size_spec.index:
        labels = "total_size_" + segment
        rows = x_co["_segment_label"] == segment
        x_co.loc[rows, "total_size_segment"] = x_co[labels][rows]

    # Remove choosers with invalid observed choice (appropriate total size value = 0)
    valid_observed_zone = x_co["total_size_segment"] > 0
    x_co = x_co[valid_observed_zone]
    x_ca = x_ca[x_ca.index.get_level_values(chooser_index_name).isin(
        x_co.index)]

    # Merge land use characteristics into CA data
    try:
        x_ca_1 = pd.merge(x_ca, landuse, on="zone_id", how="left")
    except KeyError:
        # Missing the zone_id variable?
        # Use the alternative id's instead, which assumes no sampling of alternatives
        x_ca_1 = pd.merge(x_ca,
                          landuse,
                          left_on=x_ca.index.get_level_values(1),
                          right_index=True,
                          how="left")
    x_ca_1.index = x_ca.index

    # Availability of choice zones
    if "util_no_attractions" in x_ca_1:
        av = x_ca_1["util_no_attractions"].apply(
            lambda x: False if x == 1 else True).astype(np.int8)
    elif "@df['size_term']==0" in x_ca_1:
        av = x_ca_1["@df['size_term']==0"].apply(
            lambda x: False if x == 1 else True).astype(np.int8)
    else:
        av = 1

    d = DataFrames(co=x_co, ca=x_ca_1, av=av)

    m = Model(dataservice=d)
    if len(spec.columns) == 4 and all(
            spec.columns ==
        ['Label', 'Description', 'Expression', 'coefficient']):
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col="Label",
            p_col=spec.columns[-1],
            ignore_x=("local_dist", ),
        )
    elif len(spec.columns) == 4 \
            and all(spec.columns[:3] == ['Label', 'Description', 'Expression']) \
            and len(SEGMENT_IDS) == 1 \
            and spec.columns[3] == list(SEGMENT_IDS.values())[0]:
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col="Label",
            p_col=spec.columns[-1],
            ignore_x=("local_dist", ),
        )
    else:
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col=label_column_name,
            p_col=SEGMENT_IDS,
            ignore_x=("local_dist", ),
            segment_id=CHOOSER_SEGMENT_COLUMN_NAME,
        )

    if CHOOSER_SEGMENT_COLUMN_NAME is None:
        assert len(size_spec) == 1
        m.quantity_ca = sum(
            P(f"{i}_{q}") * X(q) for i in size_spec.index
            for q in size_spec.columns if size_spec.loc[i, q] != 0)
    else:
        m.quantity_ca = sum(
            P(f"{i}_{q}") * X(q) *
            X(f"{CHOOSER_SEGMENT_COLUMN_NAME}=={str_repr(SEGMENT_IDS[i])}")
            for i in size_spec.index for q in size_spec.columns
            if size_spec.loc[i, q] != 0)

    apply_coefficients(coefficients, m)
    apply_coefficients(size_coef, m, minimum=-6, maximum=6)

    m.choice_co_code = "override_choice"

    if return_data:
        return (
            m,
            Dict(
                edb_directory=Path(edb_directory),
                alt_values=alt_values,
                chooser_data=chooser_data,
                coefficients=coefficients,
                landuse=landuse,
                spec=spec,
                size_spec=size_spec,
                master_size_spec=master_size_spec,
                model_selector=model_selector,
                settings=settings,
            ),
        )

    return m
Esempio n. 3
0
def simple_simulate_model(
        name,
        edb_directory="output/estimation_data_bundle/{name}/",
        return_data=False,
        choices=None,
        construct_avail=False,
        values_index_col="household_id",
):
    data = simple_simulate_data(
        name=name, edb_directory=edb_directory, values_index_col=values_index_col,
    )
    coefficients = data.coefficients
    # coef_template = data.coef_template # not used
    spec = data.spec
    chooser_data = data.chooser_data
    settings = data.settings

    alt_names = data.alt_names
    alt_codes = data.alt_codes

    from .general import clean_values
    chooser_data = clean_values(
        chooser_data,
        alt_names_to_codes=choices or data.alt_names_to_codes,
        choice_code="override_choice_code",
    )

    if settings.get('LOGIT_TYPE') == 'NL':
        tree = construct_nesting_tree(data.alt_names, settings["NESTS"])
        m = Model(graph=tree)
    else:
        m = Model(alts=data.alt_codes_to_names)

    m.utility_co = dict_of_linear_utility_from_spec(
        spec, "Label", dict(zip(alt_names, alt_codes)),
    )

    apply_coefficients(coefficients, m)

    if construct_avail:
        avail = construct_availability(m, chooser_data, data.alt_codes_to_names)
    else:
        avail = True

    d = DataFrames(co=chooser_data, av=avail, alt_codes=alt_codes, alt_names=alt_names, )

    m.dataservice = d
    m.choice_co_code = "override_choice_code"

    if return_data:
        return (
            m,
            Dict(
                edb_directory=data.edb_directory,
                chooser_data=chooser_data,
                coefficients=coefficients,
                spec=spec,
                alt_names=alt_names,
                alt_codes=alt_codes,
                settings=settings,
            ),
        )

    return m
Esempio n. 4
0
def schedule_choice_model(
    name,
    edb_directory="output/estimation_data_bundle/{name}/",
    coefficients_file="{name}_coefficients.csv",
    spec_file="{name}_SPEC.csv",
    alt_values_file="{name}_alternatives_combined.csv",
    chooser_file="{name}_choosers_combined.csv",
    settings_file="{name}_model_settings.yaml",
    return_data=False,
):
    model_selector = name.replace("_location", "")
    model_selector = model_selector.replace("_destination", "")
    model_selector = model_selector.replace("_subtour", "")
    model_selector = model_selector.replace("_tour", "")
    edb_directory = edb_directory.format(name=name)

    def _read_csv(filename, optional=False, **kwargs):
        filename = filename.format(name=name)
        try:
            return pd.read_csv(os.path.join(edb_directory, filename), **kwargs)
        except FileNotFoundError:
            if optional:
                return None
            else:
                raise

    settings_file = settings_file.format(name=name)
    with open(os.path.join(edb_directory, settings_file), "r") as yf:
        settings = yaml.load(
            yf,
            Loader=yaml.SafeLoader,
        )

    try:
        coefficients = _read_csv(
            coefficients_file,
            index_col="coefficient_name",
        )
    except FileNotFoundError:
        # possibly mis-named file is shown in settings
        coefficients_file = settings.get('COEFFICIENTS', coefficients_file)
        coefficients = _read_csv(
            coefficients_file,
            index_col="coefficient_name",
        )

    spec = _read_csv(spec_file, comment='#')
    alt_values = _read_csv(alt_values_file)
    chooser_data = _read_csv(chooser_file)

    # remove temp rows from spec, ASim uses them to calculate the other values written
    # to the EDB, but they are not actually part of the utility function themselves.
    spec = spec.loc[~spec.Expression.str.startswith("_")].copy()

    include_settings = settings.get("include_settings")
    if include_settings:
        with open(os.path.join(edb_directory, include_settings), "r") as yf:
            more_settings = yaml.load(
                yf,
                Loader=yaml.SafeLoader,
            )
        settings.update(more_settings)

    CHOOSER_SEGMENT_COLUMN_NAME = settings.get("CHOOSER_SEGMENT_COLUMN_NAME")
    SEGMENT_IDS = settings.get("SEGMENT_IDS")
    if SEGMENT_IDS is None:
        SEGMENTS = settings.get("SEGMENTS")
        if SEGMENTS is not None:
            SEGMENT_IDS = {i: i for i in SEGMENTS}

    if 'Label' in spec.columns:
        label_column_name = 'Label'
    elif 'Expression' in spec.columns:
        label_column_name = 'Expression'
    else:
        raise ValueError("cannot find Label or Expression in spec file")

    m = Model()
    if len(spec.columns) == 4 and ([c.lower() for c in spec.columns] == [
            'label', 'description', 'expression', 'coefficient'
    ]):
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col="Label",
            p_col=spec.columns[-1],
            ignore_x=("local_dist", ),
        )
    elif len(spec.columns) == 4 \
            and all(spec.columns[:3] == ['Label', 'Description', 'Expression']) \
            and len(SEGMENT_IDS) == 1 \
            and spec.columns[3] == list(SEGMENT_IDS.values())[0]:
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col="Label",
            p_col=spec.columns[-1],
            ignore_x=("local_dist", ),
        )
    else:
        m.utility_ca = linear_utility_from_spec(
            spec,
            x_col=label_column_name,
            p_col=SEGMENT_IDS,
            ignore_x=("local_dist", ),
            segment_id=CHOOSER_SEGMENT_COLUMN_NAME,
        )

    apply_coefficients(coefficients, m, minimum=-25, maximum=25)

    chooser_index_name = chooser_data.columns[0]
    x_co = chooser_data.set_index(chooser_index_name)
    alt_values.fillna(0, inplace=True)
    x_ca = cv_to_ca(
        alt_values.set_index([chooser_index_name, alt_values.columns[1]]),
        required_labels=spec[label_column_name],
    )

    # if CHOOSER_SEGMENT_COLUMN_NAME is not None:
    #     # label segments with names
    #     SEGMENT_IDS_REVERSE = {v: k for k, v in SEGMENT_IDS.items()}
    #     x_co["_segment_label"] = x_co[CHOOSER_SEGMENT_COLUMN_NAME].apply(
    #         lambda x: SEGMENT_IDS_REVERSE[x]
    #     )
    # else:
    #     x_co["_segment_label"] = size_spec.index[0]

    alt_codes = np.arange(len(x_ca.index.levels[1])) + 1
    x_ca.index = x_ca.index.set_levels(alt_codes, 1)
    x_co["override_choice_plus1"] = x_co["override_choice"] + 1
    x_co["model_choice_plus1"] = x_co["model_choice"] + 1

    unavail_coefs = coefficients.query(
        "(constrain == 'T') & (value < -900)").index
    unavail_data = [i.data for i in m.utility_ca if i.param in unavail_coefs]
    if len(unavail_data):
        joint_unavail = "|".join(f"({i}>0)" for i in unavail_data)
        joint_avail = f"~({joint_unavail})"
    else:
        joint_avail = 1

    d = DataFrames(co=x_co, ca=x_ca, av=joint_avail)
    m.dataservice = d
    m.choice_co_code = "override_choice_plus1"
    # m.choice_co_code = "model_choice_plus1"

    if return_data:
        return (
            m,
            Dict(
                edb_directory=Path(edb_directory),
                alt_values=alt_values,
                chooser_data=chooser_data,
                coefficients=coefficients,
                spec=spec,
                model_selector=model_selector,
                joint_avail=joint_avail,
            ),
        )

    return m
Esempio n. 5
0
def auto_ownership_model(
    name="auto_ownership",
    edb_directory="output/estimation_data_bundle/{name}/",
    return_data=False,
):
    data = simple_simulate_data(
        name=name,
        edb_directory=edb_directory,
        values_index_col="household_id",
    )
    coefficients = data.coefficients
    # coef_template = data.coef_template # not used
    spec = data.spec
    chooser_data = data.chooser_data
    settings = data.settings

    altnames = list(spec.columns[3:])
    altcodes = range(len(altnames))

    chooser_data = remove_apostrophes(chooser_data)
    chooser_data.fillna(0, inplace=True)

    # Remove choosers with invalid observed choice
    chooser_data = chooser_data[chooser_data["override_choice"] >= 0]

    m = Model()
    # One of the alternatives is coded as 0, so
    # we need to explicitly initialize the MNL nesting graph
    # and set to root_id to a value other than zero.
    m.initialize_graph(alternative_codes=altcodes, root_id=99)

    m.utility_co = dict_of_linear_utility_from_spec(
        spec,
        "Label",
        dict(zip(altnames, altcodes)),
    )

    apply_coefficients(coefficients, m)

    d = DataFrames(
        co=chooser_data,
        av=True,
        alt_codes=altcodes,
        alt_names=altnames,
    )

    m.dataservice = d
    m.choice_co_code = "override_choice"

    if return_data:
        return (
            m,
            Dict(
                edb_directory=data.edb_directory,
                chooser_data=chooser_data,
                coefficients=coefficients,
                spec=spec,
                altnames=altnames,
                altcodes=altcodes,
            ),
        )

    return m