Esempio n. 1
0
def exp_a(name):
    global source
    # source_dict_copy = deepcopy(source_dict)
    # source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'].extend([{
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': T.nnet.softplus,
        'W': Normal(std=1 / sqrt(40))
    }])
    net = Net(**net_dict_copy)
    return net
Esempio n. 2
0
def q_network(state):
    input_state = InputLayer(input_var = state,
                             shape     = (None, n_state))

    dense_1     = DenseLayer(input_state,
                             num_units    = n_state,
                             nonlinearity = tanh,
                             W         = Normal(0.1, 0.0),
                             b         = Constant(0.0))

    dense_2     = DenseLayer(dense_1,
                             num_units    = n_state,
                             nonlinearity = tanh,
                             W         = Normal(0.1, 0.0),
                             b         = Constant(0.0))

    q_values    = DenseLayer(dense_2,
                             num_units    = n_action,
                             nonlinearity = None,
                             W         = Normal(0.1, 0.0),
                             b         = Constant(0.0))

    return q_values
Esempio n. 3
0
def exp_b(name):
    global source
    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'].append({
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': None,
        'W': Normal(std=(1 / sqrt(25)))
    })
    net = Net(**net_dict_copy)
    return net
Esempio n. 4
0
def exp_f(name):
    source_dict['appliances'].append('dish washer')
    source_dict['appliances'].append(['washer dryer', 'washing machine'])
    source_dict['skip_probability'] = 0.7
    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)

    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [{
        'type': BLSTMLayer,
        'num_units': 50,
        'gradient_steps': GRADIENT_STEPS,
        'peepholes': False,
        'W_in_to_cell': Normal(std=1.)
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': None,
        'W': Normal(std=(1 / sqrt(50)))
    }]
    net = Net(**net_dict_copy)
    return net
Esempio n. 5
0
def exp_b(name):
    # as above but without gradient_steps
    source = RealApplianceSource(
        filename='/data/dk3810/ukdale.h5',
        appliances=[['fridge freezer', 'fridge', 'freezer'],
                    'hair straighteners', 'television'
                    # 'dish washer',
                    # ['washer dryer', 'washing machine']
                    ],
        max_appliance_powers=[300, 500, 200],  #, 2500, 2400],
        on_power_thresholds=[20, 20, 20],  #, 20, 20],
        max_input_power=1000,
        min_on_durations=[60, 60, 60],  #, 1800, 1800],
        window=("2013-06-01", "2014-07-01"),
        seq_length=1000,
        output_one_appliance=False,
        boolean_targets=False,
        min_off_duration=60,
        train_buildings=[1],
        validation_buildings=[1],
        skip_probability=0,
        n_seq_per_batch=5)

    net = Net(experiment_name=name,
              source=source,
              save_plot_interval=SAVE_PLOT_INTERVAL,
              loss_function=crossentropy,
              updates=partial(nesterov_momentum, learning_rate=0.1),
              layers_config=[{
                  'type': DenseLayer,
                  'num_units': 50,
                  'nonlinearity': sigmoid,
                  'b': Uniform(25),
                  'W': Uniform(25)
              }, {
                  'type': DenseLayer,
                  'num_units': 50,
                  'nonlinearity': sigmoid,
                  'b': Uniform(10),
                  'W': Uniform(10)
              }, {
                  'type': LSTMLayer,
                  'num_units': 50,
                  'W_in_to_cell': Normal(1)
              }, {
                  'type': DenseLayer,
                  'num_units': source.n_outputs,
                  'nonlinearity': sigmoid
              }])
    return net
Esempio n. 6
0
def exp_g(name):
    global source
    try:
        a = source
    except NameError:
        source = RealApplianceSource(**source_dict)
    source.lag = 5
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [{
        'type': LSTMLayer,
        'num_units': 200,
        'gradient_steps': GRADIENT_STEPS,
        'peepholes': False,
        'W_in_to_cell': Normal(std=1.)
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': None,
        'W': Normal(std=(1 / sqrt(200)))
    }]
    net = Net(**net_dict_copy)
    return net
def generator(input_var):
    network = lasagne.layers.InputLayer(shape=(None, NLAT,1,1),
                                        input_var=input_var)

    network = ll.DenseLayer(network, num_units=4*4*64, W=Normal(0.05), nonlinearity=nn.relu)
    #print(input_var.shape[0])
    network = ll.ReshapeLayer(network, (batch_size,64,4,4))
    network = nn.Deconv2DLayer(network, (batch_size,32,7,7), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,32,11,11), (5,5), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,32,25,25), (5,5), stride=(2,2), pad='valid', W=Normal(0.05), nonlinearity=nn.relu)
    network = nn.Deconv2DLayer(network, (batch_size,1,28,28), (4,4), stride=(1,1), pad='valid', W=Normal(0.05), nonlinearity=sigmoid)

    #network =lasagne.layers.Conv2DLayer(network, num_filters=1, filter_size=1, stride=1, nonlinearity=sigmoid)
    return network
Esempio n. 8
0
def exp_a(name):
    global source
    # source_dict_copy = deepcopy(source_dict)
    # source = RealApplianceSource(**source_dict_copy)

    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [
        {
            'type': RecurrentLayer,
            'num_units': 50,
            'gradient_steps': GRADIENT_STEPS,
            'W_in_to_hid': Normal(std=1.)
        },
        {
            'type': DenseLayer,
            'num_units': source.n_outputs,
            'nonlinearity': None,
            'W': Normal(std=(1/sqrt(50)))
        }
    ]
    net = Net(**net_dict_copy)
    return net
Esempio n. 9
0
def exp_a(name):
    global source
    # source_dict_copy = deepcopy(source_dict)
    # source = RealApplianceSource(**source_dict_copy)
    source.subsample_target = 5
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 25,
            'gradient_steps': GRADIENT_STEPS,
            'W_in_to_hid': Normal(std=1.),
            'nonlinearity': tanh
        },
        {
            'type': FeaturePoolLayer,
            'ds': 5, # number of feature maps to be pooled together
            'axis': 1, # pool over the time axis
            'pool_function': T.mean
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': 25,
            'gradient_steps': GRADIENT_STEPS,
            'W_in_to_hid': Normal(std=1/sqrt(25)),
            'nonlinearity': tanh
        },
        {
            'type': DenseLayer,
            'num_units': source.n_outputs,
            'nonlinearity': None,
            'W': Normal(std=(1/sqrt(25)))
        }
    ]
    net = Net(**net_dict_copy)
    return net
Esempio n. 10
0
def exp_a(name):
    # 3 appliances
    global source
    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    N = 50
    net_dict_copy['layers_config'] = [
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': N,
            'gradient_steps': GRADIENT_STEPS,
            'W_in_to_hid': Normal(std=1.),
            'nonlinearity': tanh
        },
        {
            'type': FeaturePoolLayer,
            'ds': 4,  # number of feature maps to be pooled together
            'axis': 1,  # pool over the time axis
            'pool_function': T.max
        },
        {
            'type': BidirectionalRecurrentLayer,
            'num_units': N,
            'gradient_steps': GRADIENT_STEPS,
            'W_in_to_hid': Normal(std=1 / sqrt(N)),
            'nonlinearity': tanh
        },
        {
            'type': MixtureDensityLayer,
            'num_units': source.n_outputs,
            'num_components': 2
        }
    ]
    net = Net(**net_dict_copy)
    return net
Esempio n. 11
0
def exp_h(name):
    # replace tanh with sigmoid

    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [{
        'type': DenseLayer,
        'num_units': 40,
        'nonlinearity': sigmoid,
        'W': Normal(std=1)
    }, {
        'type': DenseLayer,
        'num_units': 40,
        'nonlinearity': sigmoid
    }, {
        'type': BidirectionalRecurrentLayer,
        'num_units': 40,
        'gradient_steps': GRADIENT_STEPS,
        'nonlinearity': sigmoid,
        'learn_init': False,
        'precompute_input': False
    }, {
        'type': DimshuffleLayer,
        'pattern': (0, 2, 1)
    }, {
        'type': Conv1DLayer,
        'num_filters': 40,
        'filter_length': 4,
        'stride': 4,
        'nonlinearity': sigmoid
    }, {
        'type': DimshuffleLayer,
        'pattern': (0, 2, 1)
    }, {
        'type': BidirectionalRecurrentLayer,
        'num_units': 40,
        'gradient_steps': GRADIENT_STEPS,
        'nonlinearity': sigmoid,
        'learn_init': False,
        'precompute_input': False
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': T.nnet.softplus
    }]
    net = Net(**net_dict_copy)
    return net
Esempio n. 12
0
def exp_a(name):
    # ReLU hidden layers
    # linear output
    # output one appliance
    # 0% skip prob for first appliance
    # 100% skip prob for other appliances
    # input is diff
    global source
    source_dict_copy = deepcopy(source_dict)
    source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [{
        'type': RecurrentLayer,
        'num_units': 256,
        'W_in_to_hid': Normal(std=1),
        'W_hid_to_hid': Identity(scale=0.9),
        'nonlinearity': rectify,
        'learn_init': False,
        'precompute_input': True
    }, {
        'type': RecurrentLayer,
        'num_units': 256,
        'W_in_to_hid': Normal(std=1 / sqrt(256)),
        'W_hid_to_hid': Identity(scale=0.9),
        'nonlinearity': rectify,
        'learn_init': False,
        'precompute_input': True
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': None,
        'W': Normal(std=1 / sqrt(256))
    }]
    net = Net(**net_dict_copy)
    return net
Esempio n. 13
0
def exp_a(name):
    global source
    # source_dict_copy = deepcopy(source_dict)
    # source = RealApplianceSource(**source_dict_copy)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    N = 512
    output_shape = source.output_shape_after_processing()
    net_dict_copy['layers_config'] = [{
        'type': DenseLayer,
        'num_units': N,
        'W': Normal(std=1 / sqrt(N)),
        'nonlinearity': rectify
    }, {
        'type': DenseLayer,
        'num_units': N // 2,
        'W': Normal(std=1 / sqrt(N)),
        'nonlinearity': rectify
    }, {
        'type': DenseLayer,
        'num_units': N // 4,
        'W': Normal(std=1 / sqrt(N // 2)),
        'nonlinearity': rectify
    }, {
        'type':
        DenseLayer,
        'num_units':
        output_shape[1] * output_shape[2],
        'W':
        Normal(std=1 / sqrt(N // 4)),
        'nonlinearity':
        T.nnet.softplus
    }]
    net = Net(**net_dict_copy)
    net.load_params(25000)
    return net
Esempio n. 14
0
def exp_b(name):
    try:
        a = source
    except NameError:
        source = RealApplianceSource(**source_dict)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name, source=source, loss_function=scaled_cost))
    net_dict_copy['layers_config'].append({
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': None,
        'W': Normal(std=(1 / sqrt(50)))
    })
    net = Net(**net_dict_copy)
    return net
Esempio n. 15
0
def conv_layer(input_,
               filter_size,
               num_filters,
               stride,
               pad,
               nonlinearity=relu,
               W=Normal(0.02),
               **kwargs):
    return dnn.Conv2DDNNLayer(input_,
                              num_filters=num_filters,
                              stride=parse_tuple(stride),
                              filter_size=parse_tuple(filter_size),
                              pad=pad,
                              W=W,
                              nonlinearity=nonlinearity,
                              **kwargs)
Esempio n. 16
0
def style_conv_block(conv_in,
                     num_styles,
                     num_filters,
                     filter_size,
                     stride,
                     nonlinearity=rectify,
                     normalization=instance_norm):
    sc_network = ReflectLayer(conv_in, filter_size // 2)
    sc_network = normalization(ConvLayer(sc_network,
                                         num_filters,
                                         filter_size,
                                         stride,
                                         nonlinearity=nonlinearity,
                                         W=Normal()),
                               num_styles=num_styles)
    return sc_network
Esempio n. 17
0
    def __init__(self,
                 index_to_token,
                 index_to_condition,
                 skip_token=SPECIAL_TOKENS.PAD_TOKEN,
                 learning_rate=ADADELTA_LEARNING_RATE,
                 grad_clip=GRAD_CLIP,
                 hidden_layer_dim=HIDDEN_LAYER_DIMENSION,
                 encoder_depth=ENCODER_DEPTH,
                 decoder_depth=DECODER_DEPTH,
                 init_embedding=None,
                 word_embedding_dim=WORD_EMBEDDING_DIMENSION,
                 train_word_embedding=TRAIN_WORD_EMBEDDINGS_LAYER,
                 dense_dropout_ratio=DENSE_DROPOUT_RATIO,
                 condition_embedding_dim=CONDITION_EMBEDDING_DIMENSION):
        """
        :param index_to_token: Dict with tokens and indices for neural network
        :param skip_token: Token to skip with masking. Id of this token is inferred from index_to_token dictionary.
        :param learning_rate: Starting learning rate for the optimization algorithm
        :param grad_clip: Clipping parameter to prevent gradient explosion.
        :param init_embedding: Matrix to initialize word-embedding layer. Default value is random standart-gaussian
            initialization.
        """
        self._index_to_token = index_to_token
        self._token_to_index = {v: k for k, v in index_to_token.items()}
        self._vocab_size = len(self._index_to_token)

        self._index_to_condition = index_to_condition
        self._condition_to_index = {v: k for k, v in index_to_condition.items()}
        self._condition_ids_num = len(self._condition_to_index)
        self._condition_embedding_dim = condition_embedding_dim

        self._learning_rate = learning_rate
        self._grad_clip = grad_clip

        self._W_init_embedding = Normal() if init_embedding is None else init_embedding
        self._word_embedding_dim = word_embedding_dim
        self._train_word_embedding = train_word_embedding
        self._skip_token_id = self._token_to_index[skip_token]

        self._hidden_layer_dim = hidden_layer_dim
        self._encoder_depth = encoder_depth
        self._decoder_depth = decoder_depth
        self._dense_dropout_ratio = dense_dropout_ratio

        self._train_fn = None  # Training functions are compiled as needed
        self._build_model_computational_graph()
        self._compile_theano_functions_for_prediction()
Esempio n. 18
0
def exp_x(name):
    try:
        source.lag = 1
        source.target_is_diff = False
    except NameError:
        global source
        source = RealApplianceSource(**source_dict)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'].append({
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': sigmoid,
        'W': Normal(std=(1 / sqrt(50)))
    })
    net = Net(**net_dict_copy)
    return net
Esempio n. 19
0
def convert_initialization(component, nonlinearity="sigmoid"):
    # component = init_dic[component_key]
    assert(len(component) == 2)
    if component[0] == "uniform":
        return Uniform(component[1])
    elif component[0] == "glorotnormal":
        if nonlinearity in ["linear", "sigmoid", "tanh"]:
            return GlorotNormal(1.)
        else:
            return GlorotNormal("relu")
    elif component[0] == "glorotuniform":
        if nonlinearity in ["linear", "sigmoid", "tanh"]:
            return GlorotUniform(1.)
        else:
            return GlorotUniform("relu")
    elif component[0] == "normal":
        return Normal(*component[1])
    else:
        raise NotImplementedError()
Esempio n. 20
0
def exp_x(name, learning_rate):
    global source
    try:
        a = source
    except NameError:
        source = RealApplianceSource(**source_dict)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(
        dict(experiment_name=name,
             source=source,
             updates=partial(nesterov_momentum, learning_rate=learning_rate)))
    net_dict_copy['layers_config'].append({
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': sigmoid,
        'W': Normal(std=(1 / sqrt(50)))
    })
    net = Net(**net_dict_copy)
    return net
Esempio n. 21
0
def exp_d(name):
    global source
    try:
        a = source
    except NameError:
        source = RealApplianceSource(**source_dict)
    net_dict_copy = deepcopy(net_dict)
    net_dict_copy.update(dict(experiment_name=name, source=source))
    net_dict_copy['layers_config'] = [{
        'type': DenseLayer,
        'num_units': 50,
        'nonlinearity': sigmoid
    }, {
        'type': DenseLayer,
        'num_units': source.n_outputs,
        'nonlinearity': sigmoid,
        'W': Normal(std=1 / sqrt(50))
    }]
    net = Net(**net_dict_copy)
    return net
Esempio n. 22
0
    def __init__(self,
                 incomings,
                 hid_state_size,
                 voc_size,
                 resetgate=GRU_Gate(),
                 updategate=GRU_Gate(),
                 hid_update=GRU_Gate(nonlinearity=nonlin.tanh),
                 W=Normal(),
                 max_answer_word=1,
                 **kwargs):
        super(AnswerModule, self).__init__(incomings, **kwargs)

        self.hid_state_size = hid_state_size

        #FOR GRU
        input_shape = self.input_shapes[0]
        num_inputs = np.prod(
            input_shape[1]) + voc_size  # concatenation of previous prediction

        def add_gate(gate, gate_name):
            return (self.add_param(gate.W_in, (num_inputs, hid_state_size),
                                   name="W_in_to_{}".format(gate_name)),
                    self.add_param(gate.W_hid,
                                   (hid_state_size, hid_state_size),
                                   name="W_hid_to_{}".format(gate_name)),
                    self.add_param(gate.b, (hid_state_size, ),
                                   name="b_{}".format(gate_name),
                                   regularizable=False), gate.nonlinearity)

        # Add in all parameters from gates
        (self.W_in_to_updategate, self.W_hid_to_updategate, self.b_updategate,
         self.nonlinearity_updategate) = add_gate(updategate, 'updategate')
        (self.W_in_to_resetgate, self.W_hid_to_resetgate, self.b_resetgate,
         self.nonlinearity_resetgate) = add_gate(resetgate, 'resetgate')
        (self.W_in_to_hid_update, self.W_hid_to_hid_update, self.b_hid_update,
         self.nonlinearity_hid) = add_gate(hid_update, 'hid_update')

        self.W = self.add_param(W, (hid_state_size, voc_size), name="W")
        self.max_answer_word = max_answer_word

        self.rand_stream = RandomStreams(np.random.randint(1, 2147462579))
def build_generator_64(noise=None, ngf=128):
    # noise input
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer
    gnet0 = DenseLayer(InputNoise,
                       ngf * 8 * 4 * 4,
                       W=Normal(0.02),
                       nonlinearity=relu)
    print("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0, ([0], ngf * 8, 4, 4))
    print("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1,
                          ngf * 8, (4, 4), (2, 2),
                          crop=1,
                          W=Normal(0.02),
                          nonlinearity=relu)
    print("Gen deconv2:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2,
                          ngf * 4, (4, 4), (2, 2),
                          crop=1,
                          W=Normal(0.02),
                          nonlinearity=relu)
    print("Gen deconv3:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3,
                          ngf * 4, (4, 4), (2, 2),
                          crop=1,
                          W=Normal(0.02),
                          nonlinearity=relu)
    print("Gen deconv4:", gnet4.output_shape)
    # DeConv Layer
    gnet5 = Deconv2DLayer(gnet4,
                          ngf * 2, (4, 4), (2, 2),
                          crop=1,
                          W=Normal(0.02),
                          nonlinearity=relu)
    print("Gen deconv5:", gnet5.output_shape)
    # DeConv Layer
    gnet6 = Deconv2DLayer(gnet5,
                          3, (3, 3), (1, 1),
                          crop='same',
                          W=Normal(0.02),
                          nonlinearity=tanh)
    print("Gen output:", gnet6.output_shape)
    return gnet6
def build_discriminator_128(image=None, ndf=128):
    lrelu = LeakyRectify(0.2)
    # input: images
    InputImg = InputLayer(shape=(None, 3, 128, 128), input_var=image)
    print("Dis Img_input:", InputImg.output_shape)
    # Conv Layer
    dis1 = Conv2DLayer(InputImg,
                       ndf, (4, 4), (2, 2),
                       pad=1,
                       W=Normal(0.02),
                       nonlinearity=lrelu)
    print("Dis conv1:", dis1.output_shape)
    # Conv Layer
    dis2 = batch_norm(
        Conv2DLayer(dis1,
                    ndf * 2, (4, 4), (2, 2),
                    pad=1,
                    W=Normal(0.02),
                    nonlinearity=lrelu))
    print("Dis conv2:", dis2.output_shape)
    # Conv Layer
    dis3 = batch_norm(
        Conv2DLayer(dis2,
                    ndf * 4, (4, 4), (2, 2),
                    pad=1,
                    W=Normal(0.02),
                    nonlinearity=lrelu))
    print("Dis conv3:", dis3.output_shape)
    # Conv Layer
    dis4 = batch_norm(
        Conv2DLayer(dis3,
                    ndf * 8, (4, 4), (2, 2),
                    pad=1,
                    W=Normal(0.02),
                    nonlinearity=lrelu))
    print("Dis conv3:", dis4.output_shape)
    # Conv Layer
    dis5 = batch_norm(
        Conv2DLayer(dis4,
                    ndf * 16, (4, 4), (2, 2),
                    pad=1,
                    W=Normal(0.02),
                    nonlinearity=lrelu))
    print("Dis conv4:", dis5.output_shape)
    # Conv Layer
    dis6 = DenseLayer(dis5, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print("Dis output:", dis6.output_shape)
    return dis6
def build_discriminator_toy(image=None, nd=512, GP_norm=None):
    Input = InputLayer(shape=(None, 2), input_var=image)
    print("Dis input:", Input.output_shape)
    dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu)
    print("Dis fc0:", dis0.output_shape)
    if GP_norm is True:
        dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)
    else:
        dis1 = batch_norm(
            DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu))
    print("Dis fc1:", dis1.output_shape)
    if GP_norm is True:
        dis2 = batch_norm(
            DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu))
    else:
        dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)
    print("Dis fc2:", dis2.output_shape)
    disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print("Dis output:", disout.output_shape)
    return disout
Esempio n. 26
0
    def __init__(self, dim, mode, l2, l1, batch_norm, dropout,
                 batch_size, input_dim=76, **kwargs):
                
        print "==> not used params in network class:", kwargs.keys()
        
        self.dim = dim
        self.mode = mode
        self.l2 = l2
        self.l1 = l1
        self.batch_norm = batch_norm
        self.dropout = dropout
        self.batch_size = batch_size
        
        self.input_var = T.tensor3('X')
        self.input_lens = T.ivector('L')
        self.target_var = T.ivector('y')
        self.weight = T.vector('w')
        
        print "==> Building neural network"
        network = layers.InputLayer((None, None, input_dim), 
                                    input_var=self.input_var)
        network = layers.LSTMLayer(incoming=network, num_units=dim,
                                   only_return_final=False,
                                   grad_clipping=10,
                                   ingate=lasagne.layers.Gate(
                                        W_in=Orthogonal(),
                                        W_hid=Orthogonal(),
                                        W_cell=Normal(0.1)),
                                   forgetgate=lasagne.layers.Gate(
                                        W_in=Orthogonal(),
                                        W_hid=Orthogonal(),
                                        W_cell=Normal(0.1)),
                                   cell=lasagne.layers.Gate(W_cell=None,
                                        nonlinearity=lasagne.nonlinearities.tanh,
                                        W_in=Orthogonal(),
                                        W_hid=Orthogonal()),
                                   outgate=lasagne.layers.Gate(
                                        W_in=Orthogonal(),
                                        W_hid=Orthogonal(),
                                        W_cell=Normal(0.1)))
        lstm_output = layers.get_output(network)
        
        self.params = layers.get_all_params(network, trainable=True)
        self.reg_params = layers.get_all_params(network, regularizable=True)
        
        # for each example in minibatch take the last output
        last_outputs = []
        for index in range(self.batch_size):
            last_outputs.append(lstm_output[index, self.input_lens[index]-1, :])
        last_outputs = T.stack(last_outputs)

        network = layers.InputLayer(shape=(self.batch_size, self.dim), 
                                    input_var=last_outputs)
        network = layers.DenseLayer(incoming=network, num_units=2,
                                    nonlinearity=softmax)
        
        self.prediction = layers.get_output(network)
        self.params += layers.get_all_params(network, trainable=True)
        self.reg_params += layers.get_all_params(network, regularizable=True)
        
        self.loss_ce = (self.weight * categorical_crossentropy(self.prediction, 
                                                self.target_var)).mean()
        if self.l2 > 0: 
            self.loss_l2 = self.l2 * nn_utils.l2_reg(self.reg_params)
        else: 
            self.loss_l2 = 0
        
        if self.l1 > 0: 
            self.loss_l1 = self.l1 * nn_utils.l1_reg(self.reg_params)
        else: 
            self.loss_l1 = 0
            
        self.loss = self.loss_ce + self.loss_l2 + self.loss_l1
        
        #updates = lasagne.updates.adadelta(self.loss, self.params,
        #                                    learning_rate=0.001)
        #updates = lasagne.updates.momentum(self.loss, self.params,
        #                                    learning_rate=0.00003)
        #updates = lasagne.updates.adam(self.loss, self.params)
        updates = lasagne.updates.adam(self.loss, self.params, beta1=0.5,
                                       learning_rate=0.0001) # from DCGAN paper
        #updates = lasagne.updates.nesterov_momentum(loss, params, momentum=0.9,
        #                                             learning_rate=0.001,
        
        ## compiling theano functions
        if self.mode == 'train':
            print "==> compiling train_fn"
            self.train_fn = theano.function(inputs=[self.input_var,
                                                    self.input_lens,
                                                    self.target_var,
                                                    self.weight],
                                            outputs=[self.prediction, self.loss],
                                            updates=updates)
        
        print "==> compiling test_fn"
        self.test_fn = theano.function(inputs=[self.input_var,
                                               self.input_lens,
                                               self.target_var,
                                               self.weight],
                                       outputs=[self.prediction, self.loss])
Esempio n. 27
0
from lasagne.objectives import crossentropy, mse
from lasagne.init import Uniform, Normal
from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer
from lasagne.updates import adagrad, nesterov_momentum
from functools import partial
import os
from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff
from neuralnilm.experiment import run_experiment
from neuralnilm.net import TrainingError
import __main__

NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0]
PATH = "/homes/dk3810/workspace/python/neuralnilm/figures"
SAVE_PLOT_INTERVAL = 250
GRADIENT_STEPS = 100
"""
e103
Discovered that bottom layer is hardly changing.  So will try
just a single lstm layer

e104
standard init
lower learning rate

e106
lower learning rate to 0.001

e108
is e107 but with batch size of 5

e109
'''
models
'''
# symbols
sym_y_g = T.ivector()
sym_z_input = T.matrix()
sym_z_rand = theano_rng.uniform(size=(batch_size_g, n_z))
sym_z_shared = T.tile(theano_rng.uniform((batch_size_g/num_classes, n_z)), (num_classes, 1))

# generator y2x: p_g(x, y) = p(y) p_g(x | y) where x = G(z, y), z follows p_g(z)
gen_in_z = ll.InputLayer(shape=(None, n_z))
gen_in_y = ll.InputLayer(shape=(None,))
gen_layers = [gen_in_z]
if args.dataset == 'svhn' or args.dataset == 'cifar10':
    gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-00'))
    gen_layers.append(nn.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=4*4*512, W=Normal(0.05), nonlinearity=nn.relu, name='gen-01'), g=None, name='gen-02'))
    gen_layers.append(ll.ReshapeLayer(gen_layers[-1], (-1,512,4,4), name='gen-03'))
    gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-10'))
    gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,256,8,8), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-11'), g=None, name='gen-12')) # 4 -> 8
    gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-20'))
    gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,128,16,16), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-21'), g=None, name='gen-22')) # 8 -> 16
    gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-30'))
    gen_layers.append(nn.weight_norm(nn.Deconv2DLayer(gen_layers[-1], (None,3,32,32), (5,5), W=Normal(0.05), nonlinearity=gen_final_non, name='gen-31'), train_g=True, init_stdv=0.1, name='gen-32')) # 16 -> 32
elif args.dataset == 'mnist':
    gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-1'))
    gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-2'), name='gen-3'))
    gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-4'))
    gen_layers.append(ll.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=500, nonlinearity=ln.softplus, name='gen-5'), name='gen-6'))
    gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-7'))
    gen_layers.append(nn.l2normalize(ll.DenseLayer(gen_layers[-1], num_units=28**2, nonlinearity=gen_final_non, name='gen-8')))
Esempio n. 29
0
def test_normal():
    from lasagne.init import Normal

    sample = Normal().sample((100, 200))
    assert -0.001 < sample.mean() < 0.001
Esempio n. 30
0
sym_b_c = T.scalar('adam_beta1')
sym_w_g = T.scalar('w_g')

shared_unlabel = theano.shared(x_unlabelled, borrow=True)
slice_x_u_d = T.ivector()
slice_x_u_c = T.ivector()
slice_x_u_i = T.ivector()

classifier = build_network()

# generator y2x: p_g(x, y) = p(y) p_g(x | y) where x = G(z, y), z follows p_g(z)
gen_in_z = ll.InputLayer(shape=(None, n_z))
gen_in_y = ll.InputLayer(shape=(None,))
gen_layers = [gen_in_z]
gen_layers.append(MLPConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-00'))
gen_layers.append(nn.batch_norm(ll.DenseLayer(gen_layers[-1], num_units=4*4*512, W=Normal(0.05), nonlinearity=nn.relu, name='gen-01'), g=None, name='gen-02'))
gen_layers.append(ll.ReshapeLayer(gen_layers[-1], (-1,512,4,4), name='gen-03'))
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-10'))
gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,256,8,8), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-11'), g=None, name='gen-12')) # 4 -> 8
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-20'))
gen_layers.append(nn.batch_norm(nn.Deconv2DLayer(gen_layers[-1], (None,128,16,16), (5,5), W=Normal(0.05), nonlinearity=nn.relu, name='gen-21'), g=None, name='gen-22')) # 8 -> 16
gen_layers.append(ConvConcatLayer([gen_layers[-1], gen_in_y], num_classes, name='gen-30'))
gen_layers.append(nn.weight_norm(nn.Deconv2DLayer(gen_layers[-1], (None,3,32,32), (5,5), W=Normal(0.05), nonlinearity=gen_final_non, name='gen-31'), train_g=True, init_stdv=0.1, name='gen-32')) # 16 -> 32

# discriminator xy2p: test a pair of input comes from p(x, y) instead of p_c or p_g
dis_in_x = ll.InputLayer(shape=(None, in_channels) + dim_input)
dis_in_y = ll.InputLayer(shape=(None,))
dis_layers = [dis_in_x]
dis_layers.append(ll.DropoutLayer(dis_layers[-1], p=0.2, name='dis-00'))
dis_layers.append(ConvConcatLayer([dis_layers[-1], dis_in_y], num_classes, name='dis-01'))
dis_layers.append(nn.weight_norm(dnn.Conv2DDNNLayer(dis_layers[-1], 32, (3,3), pad=1, W=Normal(0.05), nonlinearity=nn.lrelu, name='dis-02'), name='dis-03'))
Esempio n. 31
0
    def __init__(self,
                 index_to_token,
                 index_to_condition,
                 model_init_path=None,
                 nn_models_dir=NN_MODELS_DIR,
                 model_prefix=NN_MODEL_PREFIX,
                 corpus_name=BASE_CORPUS_NAME,
                 skip_token=SPECIAL_TOKENS.PAD_TOKEN,
                 learning_rate=LEARNING_RATE,
                 grad_clip=GRAD_CLIP,
                 hidden_layer_dim=HIDDEN_LAYER_DIMENSION,
                 encoder_depth=ENCODER_DEPTH,
                 decoder_depth=DECODER_DEPTH,
                 init_embedding=None,
                 word_embedding_dim=WORD_EMBEDDING_DIMENSION,
                 train_word_embedding=TRAIN_WORD_EMBEDDINGS_LAYER,
                 dense_dropout_ratio=DENSE_DROPOUT_RATIO,
                 condition_embedding_dim=CONDITION_EMBEDDING_DIMENSION,
                 is_reverse_model=False):
        """
        :param index_to_token: Dict with tokens and indices for neural network
        :param model_init_path: Path to weights file to be used for model's intialization
        :param skip_token: Token to skip with masking. Id of this token is inferred from index_to_token dictionary
        :param learning_rate: Learning rate factor for the optimization algorithm
        :param grad_clip: Clipping parameter to prevent gradient explosion
        :param init_embedding: Matrix to initialize word-embedding layer. Default value is random standart-gaussian
            initialization
        """
        self._index_to_token = index_to_token
        self._token_to_index = {v: k for k, v in index_to_token.items()}
        self._vocab_size = len(self._index_to_token)

        self._index_to_condition = index_to_condition
        self._condition_to_index = {
            v: k
            for k, v in index_to_condition.items()
        }
        self._condition_ids_num = len(self._condition_to_index)
        self._condition_embedding_dim = condition_embedding_dim

        self._learning_rate = learning_rate
        self._grad_clip = grad_clip

        self._W_init_embedding = Normal(
        ) if init_embedding is None else init_embedding
        self._word_embedding_dim = word_embedding_dim
        self._train_word_embedding = train_word_embedding
        self._skip_token_id = self._token_to_index[skip_token]

        self._hidden_layer_dim = hidden_layer_dim
        self._encoder_depth = encoder_depth
        self._decoder_depth = decoder_depth
        self._dense_dropout_ratio = dense_dropout_ratio

        self._nn_models_dir = nn_models_dir
        self._model_prefix = model_prefix
        self._corpus_name = corpus_name
        self._is_reverse_model = is_reverse_model

        self._model_load_path = model_init_path or self.model_save_path

        self._train_fn = None  # Training functions are compiled as needed
        self._build_model_computational_graph()
        self._compile_theano_functions_for_prediction()