Esempio n. 1
0
def build_model(x=None, layer='fc8', shape=(None, 3, 227, 227), up_scale=4):
    net = {'data': InputLayer(shape=shape, input_var=x)}
    net['data_s'] = Upscale2DLayer(net['data'], up_scale)
    net['conv1'] = Conv2DLayer(net['data_s'],
                               num_filters=96,
                               filter_size=(11, 11),
                               stride=4,
                               nonlinearity=lasagne.nonlinearities.rectify)

    if layer is 'conv1':
        return net

    # pool1
    net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=(3, 3), stride=2)

    # norm1
    net['norm1'] = LocalResponseNormalization2DLayer(net['pool1'],
                                                     n=5,
                                                     alpha=0.0001 / 5.0,
                                                     beta=0.75,
                                                     k=1)

    # conv2
    # before conv2 split the data
    net['conv2_data1'] = SliceLayer(net['norm1'], indices=slice(0, 48), axis=1)
    net['conv2_data2'] = SliceLayer(net['norm1'],
                                    indices=slice(48, 96),
                                    axis=1)

    # now do the convolutions
    net['conv2_part1'] = Conv2DLayer(net['conv2_data1'],
                                     num_filters=128,
                                     filter_size=(5, 5),
                                     pad=2)
    net['conv2_part2'] = Conv2DLayer(net['conv2_data2'],
                                     num_filters=128,
                                     filter_size=(5, 5),
                                     pad=2)

    # now combine
    net['conv2'] = concat((net['conv2_part1'], net['conv2_part2']), axis=1)
    if layer is 'conv2':
        return net
    # pool2
    net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=(3, 3), stride=2)

    # norm2
    net['norm2'] = LocalResponseNormalization2DLayer(net['pool2'],
                                                     n=5,
                                                     alpha=0.0001 / 5.0,
                                                     beta=0.75,
                                                     k=1)
    # conv3
    # no group
    net['conv3'] = Conv2DLayer(net['norm2'],
                               num_filters=384,
                               filter_size=(3, 3),
                               pad=1)
    if layer is 'conv3':
        return net

    # conv4
    net['conv4_data1'] = SliceLayer(net['conv3'],
                                    indices=slice(0, 192),
                                    axis=1)
    net['conv4_data2'] = SliceLayer(net['conv3'],
                                    indices=slice(192, 384),
                                    axis=1)
    net['conv4_part1'] = Conv2DLayer(net['conv4_data1'],
                                     num_filters=192,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv4_part2'] = Conv2DLayer(net['conv4_data2'],
                                     num_filters=192,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv4'] = concat((net['conv4_part1'], net['conv4_part2']), axis=1)
    if layer is 'conv4':
        return net

    # conv5
    # group 2
    net['conv5_data1'] = SliceLayer(net['conv4'],
                                    indices=slice(0, 192),
                                    axis=1)
    net['conv5_data2'] = SliceLayer(net['conv4'],
                                    indices=slice(192, 384),
                                    axis=1)
    net['conv5_part1'] = Conv2DLayer(net['conv5_data1'],
                                     num_filters=128,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv5_part2'] = Conv2DLayer(net['conv5_data2'],
                                     num_filters=128,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv5'] = concat((net['conv5_part1'], net['conv5_part2']), axis=1)
    if layer is 'conv5':
        return net

    # pool 5
    net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=(3, 3), stride=2)

    # fc6
    net['fc6'] = DenseLayer(net['pool5'],
                            num_units=4096,
                            nonlinearity=lasagne.nonlinearities.rectify)
    if layer is 'fc6':
        return net

    # fc7
    net['fc7'] = DenseLayer(net['fc6'],
                            num_units=4096,
                            nonlinearity=lasagne.nonlinearities.rectify)
    if layer is 'fc7':
        return net

    # fc8
    net['fc8'] = DenseLayer(net['fc7'],
                            num_units=1000,
                            nonlinearity=lasagne.nonlinearities.softmax)
    if layer is 'fc8':
        # st()
        return net
def define_net(input_var):
    net = {}
    net['data'] = InputLayer(shape=(None, 3, IMAGE_SHAPE[0], IMAGE_SHAPE[1]),
                             input_var=input_var)

    net['patch'] = sample_layer.Sample2DLayer(net['data'],
                                              5, (227, 227),
                                              pad=False)

    # conv1
    net['conv1'] = Conv2DLayer(net['patch'],
                               num_filters=96,
                               filter_size=(11, 11),
                               stride=4,
                               nonlinearity=lasagne.nonlinearities.rectify)

    # pool1
    net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=(3, 3), stride=2)

    # norm1
    net['norm1'] = LocalResponseNormalization2DLayer(net['pool1'],
                                                     n=5,
                                                     alpha=0.0001 / 5.0,
                                                     beta=0.75,
                                                     k=1)

    # before conv2 split the data
    net['conv2_data1'] = SliceLayer(net['norm1'], indices=slice(0, 48), axis=1)
    net['conv2_data2'] = SliceLayer(net['norm1'],
                                    indices=slice(48, 96),
                                    axis=1)

    # now do the convolutions
    net['conv2_part1'] = Conv2DLayer(net['conv2_data1'],
                                     num_filters=128,
                                     filter_size=(5, 5),
                                     pad=2)
    net['conv2_part2'] = Conv2DLayer(net['conv2_data2'],
                                     num_filters=128,
                                     filter_size=(5, 5),
                                     pad=2)

    # now combine
    net['conv2'] = concat((net['conv2_part1'], net['conv2_part2']), axis=1)

    # pool2
    net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=(3, 3), stride=2)

    # norm2
    net['norm2'] = LocalResponseNormalization2DLayer(net['pool2'],
                                                     n=5,
                                                     alpha=0.0001 / 5.0,
                                                     beta=0.75,
                                                     k=1)

    # conv3
    # no group
    net['conv3'] = Conv2DLayer(net['norm2'],
                               num_filters=384,
                               filter_size=(3, 3),
                               pad=1)

    # conv4
    # group = 2
    net['conv4_data1'] = SliceLayer(net['conv3'],
                                    indices=slice(0, 192),
                                    axis=1)
    net['conv4_data2'] = SliceLayer(net['conv3'],
                                    indices=slice(192, 384),
                                    axis=1)
    net['conv4_part1'] = Conv2DLayer(net['conv4_data1'],
                                     num_filters=192,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv4_part2'] = Conv2DLayer(net['conv4_data2'],
                                     num_filters=192,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv4'] = concat((net['conv4_part1'], net['conv4_part2']), axis=1)

    # conv5
    # group 2
    net['conv5_data1'] = SliceLayer(net['conv4'],
                                    indices=slice(0, 192),
                                    axis=1)
    net['conv5_data2'] = SliceLayer(net['conv4'],
                                    indices=slice(192, 384),
                                    axis=1)
    net['conv5_part1'] = Conv2DLayer(net['conv5_data1'],
                                     num_filters=128,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv5_part2'] = Conv2DLayer(net['conv5_data2'],
                                     num_filters=128,
                                     filter_size=(3, 3),
                                     pad=1)
    net['conv5'] = concat((net['conv5_part1'], net['conv5_part2']), axis=1)

    # pool 5
    net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=(3, 3), stride=2)

    # fc6
    net['fc6'] = DenseLayer(net['pool5'],
                            num_units=4096,
                            nonlinearity=lasagne.nonlinearities.rectify)

    # fc7
    net['fc7'] = DenseLayer(net['fc6'],
                            num_units=4096,
                            nonlinearity=lasagne.nonlinearities.rectify)

    # fc8
    net['out'] = DenseLayer(net['fc7'],
                            num_units=1,
                            nonlinearity=lasagne.nonlinearities.linear)

    # print ('Objective layer shapes:')
    # print (lasagne.layers.get_output_shape(net['pool5']))
    # # fc6
    # net['fc6'] = Conv2DLayer(
    #     net['pool5'], num_filters=4096, filter_size=(6, 6),
    #     nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False)
    # print (lasagne.layers.get_output_shape(net['fc6']))
    # # fc7
    # net['fc7'] = Conv2DLayer(
    #     net['fc6'],
    #     num_filters=4096, filter_size=(1, 1),
    #     nonlinearity=lasagne.nonlinearities.rectify)
    # print (lasagne.layers.get_output_shape(net['fc7']))
    # # fc8
    # net['out'] = Conv2DLayer(
    #     net['fc7'],
    #     num_filters=1, filter_size=(1, 1),
    #     nonlinearity=lasagne.nonlinearities.linear)
    # print (lasagne.layers.get_output_shape(net['out']))
    return net
Esempio n. 3
0
def reference_model():
    net = {}
    net['data'] = InputLayer(shape=(None, 3, 227, 227))

    # conv1
    net['conv1'] = Conv2DLayer(
        net['data'],
        num_filters=96,
        filter_size=(11, 11),
        stride = 4,
        nonlinearity=lasagne.nonlinearities.rectify)

    
    # pool1
    net['pool1'] = MaxPool2DLayer(net['conv1'], pool_size=(3, 3), stride=2)

    # norm1
    net['norm1'] = LocalResponseNormalization2DLayer(net['pool1'],
                                                     n=5,
                                                     alpha=0.0001/5.0,
                                                     beta = 0.75,
                                                     k=1)

    # conv2
    # The caffe reference model uses a parameter called group.
    # This parameter splits input to the convolutional layer.
    # The first half of the filters operate on the first half
    # of the input from the previous layer. Similarly, the
    # second half operate on the second half of the input.
    #
    # Lasagne does not have this group parameter, but we can
    # do it ourselves.
    #
    # see https://github.com/BVLC/caffe/issues/778
    # also see https://code.google.com/p/cuda-convnet/wiki/LayerParams
    
    # before conv2 split the data
    net['conv2_data1'] = SliceLayer(net['norm1'], indices=slice(0, 48), axis=1)
    net['conv2_data2'] = SliceLayer(net['norm1'], indices=slice(48,96), axis=1)

    # now do the convolutions
    net['conv2_part1'] = Conv2DLayer(net['conv2_data1'],
                                     num_filters=128,
                                     filter_size=(5, 5),
                                     pad = 2)
    net['conv2_part2'] = Conv2DLayer(net['conv2_data2'],
                                     num_filters=128,
                                     filter_size=(5,5),
                                     pad = 2)

    # now combine
    net['conv2'] = concat((net['conv2_part1'],net['conv2_part2']),axis=1)
    
    # pool2
    net['pool2'] = MaxPool2DLayer(net['conv2'], pool_size=(3, 3), stride = 2)
    
    # norm2
    net['norm2'] = LocalResponseNormalization2DLayer(net['pool2'],
                                                     n=5,
                                                     alpha=0.0001/5.0,
                                                     beta = 0.75,
                                                     k=1)
    
    # conv3
    # no group
    net['conv3'] = Conv2DLayer(net['norm2'],
                               num_filters=384,
                               filter_size=(3, 3),
                               pad = 1)

    # conv4
    # group = 2
    net['conv4_data1'] = SliceLayer(net['conv3'], indices=slice(0, 192), axis=1)
    net['conv4_data2'] = SliceLayer(net['conv3'], indices=slice(192,384), axis=1)
    net['conv4_part1'] = Conv2DLayer(net['conv4_data1'],
                                     num_filters=192,
                                     filter_size=(3, 3),
                                     pad = 1)
    net['conv4_part2'] = Conv2DLayer(net['conv4_data2'],
                                     num_filters=192,
                                     filter_size=(3,3),
                                     pad = 1)
    net['conv4'] = concat((net['conv4_part1'],net['conv4_part2']),axis=1)
    
    # conv5
    # group 2
    net['conv5_data1'] = SliceLayer(net['conv4'], indices=slice(0, 192), axis=1)
    net['conv5_data2'] = SliceLayer(net['conv4'], indices=slice(192,384), axis=1)
    net['conv5_part1'] = Conv2DLayer(net['conv5_data1'],
                                     num_filters=128,
                                     filter_size=(3, 3),
                                     pad = 1)
    net['conv5_part2'] = Conv2DLayer(net['conv5_data2'],
                                     num_filters=128,
                                     filter_size=(3,3),
                                     pad = 1)
    net['conv5'] = concat((net['conv5_part1'],net['conv5_part2']),axis=1)
    
    # pool 5
    net['pool5'] = MaxPool2DLayer(net['conv5'], pool_size=(3, 3), stride = 2)

    # fc6
    net['fc6'] = DenseLayer(
            net['pool5'],num_units=4096,
            nonlinearity=lasagne.nonlinearities.rectify)

    # fc7
    net['fc7'] = DenseLayer(
        net['fc6'],
        num_units=4096,
        nonlinearity=lasagne.nonlinearities.rectify)

    # fc8
    net['fc8'] = DenseLayer(
        net['fc7'],
        num_units=1000,
        nonlinearity=lasagne.nonlinearities.softmax)
    
    return net
Esempio n. 4
0
def build_model(inp):
    net = {}
    net['input'] = InputLayer((None, 3, 224, 224), input_var=inp)
    net['conv1'] = Conv2DLayer(net['input'],
                               96,
                               7,
                               stride=2,
                               pad=(1, 1),
                               W=lasagne.init.Uniform())
    net['norm1'] = LocalResponseNormalization2DLayer(net['conv1'],
                                                     alpha=0.00005)
    net['pool1'] = MaxPool2DLayer(net['norm1'], 3, stride=2)
    net['conv2'] = Conv2DLayer(net['pool1'],
                               256,
                               5,
                               stride=2,
                               pad=(0, 0),
                               W=lasagne.init.Uniform(),
                               b=lasagne.init.Constant(1.))
    net['norm2'] = LocalResponseNormalization2DLayer(net['conv2'],
                                                     alpha=0.00005)
    net['pool2'] = MaxPool2DLayer(net['norm2'], 3, stride=2)
    net['conv3'] = Conv2DLayer(net['pool2'],
                               384,
                               3,
                               stride=1,
                               pad=(1, 1),
                               W=lasagne.init.Uniform())
    net['conv4'] = Conv2DLayer(net['conv3'],
                               384,
                               3,
                               stride=1,
                               pad=(1, 1),
                               W=lasagne.init.Uniform(),
                               b=lasagne.init.Constant(1.))
    net['conv5'] = Conv2DLayer(net['conv4'],
                               256,
                               3,
                               stride=1,
                               pad=(1, 1),
                               W=lasagne.init.Uniform(),
                               b=lasagne.init.Constant(1.))
    net['p5_spm6'] = FlattenLayer(MaxPool2DLayer(net['conv5'], 3, stride=2))
    net['p5_spm3'] = FlattenLayer(MaxPool2DLayer(net['conv5'], 5, stride=4))
    net['p5_spm2'] = FlattenLayer(MaxPool2DLayer(net['conv5'], 7, stride=7))
    net['p5_spm1'] = MaxPool2DLayer(net['conv5'], 13, stride=13)
    net['p5_spm1_f'] = FlattenLayer(net['p5_spm1'])
    net['conc_spm'] = ConcatLayer(
        [net['p5_spm6'], net['p5_spm3'], net['p5_spm2'], net['p5_spm1_f']])
    net['fc6'] = DenseLayer(net['conc_spm'],
                            num_units=4096,
                            W=lasagne.init.Uniform(),
                            b=lasagne.init.Constant(1.))
    net['fc6_drop'] = DropoutLayer(net['fc6'], p=0.5)
    net['fc7'] = DenseLayer(net['fc6_drop'],
                            num_units=4096,
                            W=lasagne.init.Uniform(),
                            b=lasagne.init.Constant(1.))
    net['fc7_drop'] = DropoutLayer(net['fc7'], p=0.5)
    net['fc8'] = DenseLayer(net['fc6_drop'],
                            num_units=1000,
                            W=lasagne.init.Uniform(),
                            b=lasagne.init.Constant(1.))
    net['out'] = NonlinearityLayer(net['fc8'], softmax)
    return net
Esempio n. 5
0
# Model implementation of Facenet
# This is a ZFNet based model with 1 X 1 convolutions
# Link to Paper : https://arxiv.org/pdf/1503.03832.pdf


import lasagne
import theano
from lasagne.layers import (Conv2DLayer, MaxPool2DLayer, BatchNormLayer, DenseLayer,
                            InputLayer, Deconv2DLayer, NonlinearityLayer, get_output, get_output_shape, batch_norm,
                            NINLayer, GlobalPoolLayer, LocalResponseNormalization2DLayer, DropoutLayer, ReshapeLayer)

def build_facenet(input)
    net = InputLayer((None, 220, 220, 3), input_var=input)
    net = Conv2DLayer(net, 64, 7, stride=2, pad=2)
    net = MaxPool2DLayer(net, 2)
    net = LocalResponseNormalization2DLayer(net)
    net = Conv2DLayer(net, 64, 1, stride=1)
    net = LocalResponseNormalization2DLayer(Conv2DLayer(net, 192, 3, stride=1, pad=1))
    net = MaxPool2DLayer(net, 2)
    net = Conv2DLayer(net, 192, 1, stride=1)
    net = Conv2DLayer(net, 384, 3, stride=1, pad=1)
    net = MaxPool2DLayer(net, 2)
    net = Conv2DLayer(net, 384, 1, stride=1)
    net = Conv2DLayer(net, 256, 3, stride=1, pad=1)
    net = Conv2DLayer(net, 256, 1, stride=1)
    net = Conv2DLayer(net, 256, 3, stride=1, pad=1)
    net = Conv2DLayer(net, 256, 1, stride=1)
    net = Conv2DLayer(net, 256, 3, stride=1, pad=1)
    net = MaxPool2DLayer(net, 2)
    net =  DropoutLayer(DenseLayer(net, 4096), p=0.2)
    net = DropoutLayer(DenseLayer(net, 4096), p=0.2)
Esempio n. 6
0
    return T_net


T_net = build_test_model()

with np.load('data/ENet_dlib_300.npz') as f:
    param_values = [f['arr_%d' % i] for i in range(len(f.files))]

lasagne.layers.set_all_param_values(T_net['output_layer'], param_values)

T_X_sym = T.tensor4()

T_feat_layer = LocalResponseNormalization2DLayer(
    T_net['conv4_all'],
    alpha=0.002,
    k=2,
    beta=0.75,
)

T_prediction = lasagne.layers.get_output(T_feat_layer, T_X_sym)
T_pred = theano.function([T_X_sym], T_prediction)

conv4shape = lasagne.layers.get_output_shape(T_net['conv4_all'])
print 'conv4 shape:', conv4shape


def imdata(fls, data_size=BATCH_SIZE):
    datablob = np.ndarray((data_size, 4, IM_SIZE, IM_SIZE))
    datalb = np.zeros((data_size, 1, 1, 12))
    dataps = np.zeros((data_size, 10, 4))
    n = len(fls)