Esempio n. 1
0
    def __init__(self, directory, domain, model_type="earth_model"):
        """
        The init function.

        :param directory: The directory where the earth model or kernel is
            located.
        :param model_type: Determined the type of model loaded. Currently
            two are supported:
                * earth_model - The standard SES3D model files (default)
                * kernel - The kernels. Identifies by lots of grad_* files.
                * wavefield - The raw wavefields.
        """
        self.directory = directory
        self.boxfile = os.path.join(self.directory, "boxfile")
        if not os.path.exists(self.boxfile):
            msg = "boxfile not found. Wrong directory?"
            raise ValueError(msg)

        # Read the boxfile.
        self.setup = self._read_boxfile()

        self.domain = domain
        self.model_type = model_type

        self.one_d_model = OneDimensionalModel("ak135-f")

        if model_type == "earth_model":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["A", "B", "C", "lambda", "mu", "rhoinv", "Q"]
            self.available_derived_components = ["vp", "vsh", "vsv", "rho"]
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                # Check that the naming is continuous.
                all_good = True
                for _i in range(len(self.setup["subdomains"])):
                    if os.path.join(directory,
                                    "%s%i" % (component, _i)) in files:
                        continue
                    all_good = False
                    break
                if all_good is False:
                    msg = "Naming for component %s is off. It will be skipped."
                    warnings.warn(msg)
                    continue
                # They also all need to have the same size.
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$", (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        elif model_type == "wavefield":
            components = ["vz", "vx", "vy", "vz"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(os.path.join(directory,
                                               "%s_*_*" % component))
                if not files:
                    continue
                timesteps = collections.defaultdict(list)
                for filename in files:
                    timestep = int(os.path.basename(filename).split("_")[-1])
                    timesteps[timestep].append(filename)

                for timestep, filenames in timesteps.items():
                    self.components["%s %s" % (component, timestep)] = \
                        {"filenames": sorted(
                            filenames,
                            key=lambda x: int(
                                os.path.basename(x).split("_")[1]))}
        elif model_type == "kernel":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["grad_cp", "grad_csh", "grad_csv", "grad_rho"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s_[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                    # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$", (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        else:
            msg = "model_type '%s' not known." % model_type
            raise ValueError(msg)

        # All files for a single component have the same size. Now check that
        # all files have the same size.
        unique_filesizes = len(
            list(
                set([
                    os.path.getsize(_i["filenames"][0])
                    for _i in self.components.values()
                ])))
        if unique_filesizes != 1:
            msg = ("The different components in the folder do not have the "
                   "same number of samples")
            raise ValueError(msg)

        # Now calculate the lagrange polynomial degree. All necessary
        # information is present.
        size = os.path.getsize(
            list(self.components.values())[0]["filenames"][0])
        sd = self.setup["subdomains"][0]
        x, y, z = sd["index_x_count"], sd["index_y_count"], sd["index_z_count"]
        self.lagrange_polynomial_degree = \
            int(round(((size * 0.25) / (x * y * z)) ** (1.0 / 3.0) - 1))

        self._calculate_final_dimensions()

        # Setup the boundaries.
        self.lat_bounds = [
            rotations.colat2lat(_i)
            for _i in self.setup["physical_boundaries_x"][::-1]
        ]
        self.lng_bounds = self.setup["physical_boundaries_y"]
        self.depth_bounds = [
            6371 - _i / 1000.0 for _i in self.setup["physical_boundaries_z"]
        ]

        self.collocation_points_lngs = self._get_collocation_points_along_axis(
            self.lng_bounds[0], self.lng_bounds[1],
            self.setup["point_count_in_y"])
        self.collocation_points_lats = self._get_collocation_points_along_axis(
            self.lat_bounds[0], self.lat_bounds[1],
            self.setup["point_count_in_x"])
        self.collocation_points_depth = \
            self._get_collocation_points_along_axis(
                self.depth_bounds[1], self.depth_bounds[0],
                self.setup["point_count_in_z"])[::-1]
Esempio n. 2
0
    def __init__(self, directory, domain, model_type="earth_model"):
        """
        The init function.

        :param directory: The directory where the earth model or kernel is
            located.
        :param model_type: Determined the type of model loaded. Currently
            two are supported:
                * earth_model - The standard SES3D model files (default)
                * kernel - The kernels. Identifies by lots of grad_* files.
                * wavefield - The raw wavefields.
        """
        self.directory = directory
        self.boxfile = os.path.join(self.directory, "boxfile")
        if not os.path.exists(self.boxfile):
            msg = "boxfile not found. Wrong directory?"
            raise ValueError(msg)

        # Read the boxfile.
        self.setup = self._read_boxfile()

        self.domain = domain
        self.model_type = model_type

        self.one_d_model = OneDimensionalModel("ak135-f")

        if model_type == "earth_model":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["A", "B", "C", "lambda", "mu", "rhoinv", "Q"]
            self.available_derived_components = ["vp", "vsh", "vsv", "rho"]
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                # Check that the naming is continuous.
                all_good = True
                for _i in xrange(len(self.setup["subdomains"])):
                    if os.path.join(directory,
                                    "%s%i" % (component, _i)) in files:
                        continue
                    all_good = False
                    break
                if all_good is False:
                    msg = "Naming for component %s is off. It will be skipped."
                    warnings.warn(msg)
                    continue
                # They also all need to have the same size.
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                # Sort the files by ascending number.
                files.sort(key=lambda x: int(re.findall(r"\d+$",
                                             (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        elif model_type == "wavefield":
            components = ["vz", "vx", "vy", "vz"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(os.path.join(directory, "%s_*_*" %
                                  component))
                if not files:
                    continue
                timesteps = collections.defaultdict(list)
                for filename in files:
                    timestep = int(os.path.basename(filename).split("_")[-1])
                    timesteps[timestep].append(filename)

                for timestep, filenames in timesteps.iteritems():
                    self.components["%s %s" % (component, timestep)] = \
                        {"filenames": sorted(
                            filenames,
                            key=lambda x: int(
                                os.path.basename(x).split("_")[1]))}
        elif model_type == "kernel":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["grad_cp", "grad_csh", "grad_csv", "grad_rho"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s_[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                    # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$",
                               (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        else:
            msg = "model_type '%s' not known." % model_type
            raise ValueError(msg)

        # All files for a single component have the same size. Now check that
        # all files have the same size.
        unique_filesizes = len(list(set([
            os.path.getsize(_i["filenames"][0])
            for _i in self.components.itervalues()])))
        if unique_filesizes != 1:
            msg = ("The different components in the folder do not have the "
                   "same number of samples")
            raise ValueError(msg)

        # Now calculate the lagrange polynomial degree. All necessary
        # information is present.
        size = os.path.getsize(self.components.values()[0]["filenames"][0])
        sd = self.setup["subdomains"][0]
        x, y, z = sd["index_x_count"], sd["index_y_count"], sd["index_z_count"]
        self.lagrange_polynomial_degree = \
            int(round(((size * 0.25) / (x * y * z)) ** (1.0 / 3.0) - 1))

        self._calculate_final_dimensions()

        # Setup the boundaries.
        self.lat_bounds = [
            rotations.colat2lat(_i)
            for _i in self.setup["physical_boundaries_x"][::-1]]
        self.lng_bounds = self.setup["physical_boundaries_y"]
        self.depth_bounds = [
            6371 - _i / 1000.0 for _i in self.setup["physical_boundaries_z"]]

        self.collocation_points_lngs = self._get_collocation_points_along_axis(
            self.lng_bounds[0], self.lng_bounds[1],
            self.setup["point_count_in_y"])
        self.collocation_points_lats = self._get_collocation_points_along_axis(
            self.lat_bounds[0], self.lat_bounds[1],
            self.setup["point_count_in_x"])
        self.collocation_points_depth = \
            self._get_collocation_points_along_axis(
                self.depth_bounds[1], self.depth_bounds[0],
                self.setup["point_count_in_z"])[::-1]
Esempio n. 3
0
class RawSES3DModelHandler(object):
    """
    Class able to deal with a directory of raw SES3D 4.0 models.

    An earth model directory is defined by containing:
        * boxfile              -> File describing the discretization
        * A0-A[XX]             -> Anisotropic parameters (one per CPU)
        * B0-B[XX]             -> Anisotropic parameters (one per CPU)
        * C0-C[XX]             -> Anisotropic parameters (one per CPU)
        * lambda0 - lambda[XX] -> Elastic parameters (one per CPU)
        * mu0 - mu[XX]         -> Elastic parameters (one per CPU)
        * rhoinv0 - rhoinv[XX] -> Elastic parameters (one per CPU)
        * Q0 - Q[XX]           -> Elastic parameters (one per CPU)

    A kernel directory is defined by containing:
        * boxfile              -> File describing the discretization
        * grad_cp_[XX]_[XXXX]
        * grad_csh_[XX]_[XXXX]
        * grad_csv_[XX]_[XXXX]
        * grad_rho_[XX]_[XXXX]

    A wavefield directory contains the following files:
        * boxfile              -> File describing the discretization
        * vx_[xx]_[timestep]
        * vy_[xx]_[timestep]
        * vz_[xx]_[timestep]
    """
    def __init__(self, directory, domain, model_type="earth_model"):
        """
        The init function.

        :param directory: The directory where the earth model or kernel is
            located.
        :param model_type: Determined the type of model loaded. Currently
            two are supported:
                * earth_model - The standard SES3D model files (default)
                * kernel - The kernels. Identifies by lots of grad_* files.
                * wavefield - The raw wavefields.
        """
        self.directory = directory
        self.boxfile = os.path.join(self.directory, "boxfile")
        if not os.path.exists(self.boxfile):
            msg = "boxfile not found. Wrong directory?"
            raise ValueError(msg)

        # Read the boxfile.
        self.setup = self._read_boxfile()

        self.domain = domain
        self.model_type = model_type

        self.one_d_model = OneDimensionalModel("ak135-f")

        if model_type == "earth_model":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["A", "B", "C", "lambda", "mu", "rhoinv", "Q"]
            self.available_derived_components = ["vp", "vsh", "vsv", "rho"]
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                # Check that the naming is continuous.
                all_good = True
                for _i in range(len(self.setup["subdomains"])):
                    if os.path.join(directory,
                                    "%s%i" % (component, _i)) in files:
                        continue
                    all_good = False
                    break
                if all_good is False:
                    msg = "Naming for component %s is off. It will be skipped."
                    warnings.warn(msg)
                    continue
                # They also all need to have the same size.
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$", (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        elif model_type == "wavefield":
            components = ["vz", "vx", "vy", "vz"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(os.path.join(directory,
                                               "%s_*_*" % component))
                if not files:
                    continue
                timesteps = collections.defaultdict(list)
                for filename in files:
                    timestep = int(os.path.basename(filename).split("_")[-1])
                    timesteps[timestep].append(filename)

                for timestep, filenames in timesteps.items():
                    self.components["%s %s" % (component, timestep)] = \
                        {"filenames": sorted(
                            filenames,
                            key=lambda x: int(
                                os.path.basename(x).split("_")[1]))}
        elif model_type == "kernel":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["grad_cp", "grad_csh", "grad_csv", "grad_rho"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s_[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                    # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$", (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        else:
            msg = "model_type '%s' not known." % model_type
            raise ValueError(msg)

        # All files for a single component have the same size. Now check that
        # all files have the same size.
        unique_filesizes = len(
            list(
                set([
                    os.path.getsize(_i["filenames"][0])
                    for _i in self.components.values()
                ])))
        if unique_filesizes != 1:
            msg = ("The different components in the folder do not have the "
                   "same number of samples")
            raise ValueError(msg)

        # Now calculate the lagrange polynomial degree. All necessary
        # information is present.
        size = os.path.getsize(
            list(self.components.values())[0]["filenames"][0])
        sd = self.setup["subdomains"][0]
        x, y, z = sd["index_x_count"], sd["index_y_count"], sd["index_z_count"]
        self.lagrange_polynomial_degree = \
            int(round(((size * 0.25) / (x * y * z)) ** (1.0 / 3.0) - 1))

        self._calculate_final_dimensions()

        # Setup the boundaries.
        self.lat_bounds = [
            rotations.colat2lat(_i)
            for _i in self.setup["physical_boundaries_x"][::-1]
        ]
        self.lng_bounds = self.setup["physical_boundaries_y"]
        self.depth_bounds = [
            6371 - _i / 1000.0 for _i in self.setup["physical_boundaries_z"]
        ]

        self.collocation_points_lngs = self._get_collocation_points_along_axis(
            self.lng_bounds[0], self.lng_bounds[1],
            self.setup["point_count_in_y"])
        self.collocation_points_lats = self._get_collocation_points_along_axis(
            self.lat_bounds[0], self.lat_bounds[1],
            self.setup["point_count_in_x"])
        self.collocation_points_depth = \
            self._get_collocation_points_along_axis(
                self.depth_bounds[1], self.depth_bounds[0],
                self.setup["point_count_in_z"])[::-1]

    def _read_single_box(self, component, file_number):
        """
        This function reads Ses3ds raw binary files, e.g. 3d velocity field
        snapshots, as well as model parameter files or sensitivity kernels. It
        returns the field as an array of rank 3 with shape (nx*lpd+1, ny*lpd+1,
        nz*lpd+1), discarding the duplicates by default.
        """
        # Get the file and the corresponding domain.
        filename = self.components[component]["filenames"][file_number]
        domain = self.setup["subdomains"][file_number]

        lpd = self.lagrange_polynomial_degree

        shape = (domain["index_x_count"], domain["index_y_count"],
                 domain["index_z_count"], lpd + 1, lpd + 1, lpd + 1)

        # Take care: The first and last four bytes in the arrays are invalid
        #  due to them being written by Fortran.
        with open(filename, "rb") as open_file:
            field = np.ndarray(shape,
                               buffer=open_file.read()[4:-4],
                               dtype="float32",
                               order="F")

        # Calculate the new shape by multiplying every dimension with lpd + 1
        # value for every dimension.
        new_shape = [_i * _j for _i, _j in zip(shape[:3], shape[3:])]

        # Reorder the axes:
        # v[x, y, z, lpd + 1 ,lpd + 1, lpd + 1] -> v[x, lpd + 1, y, z,
        # lpd + 1, lpd + 1] -> v[x, lpd + 1, y, lpd + 1, z, lpd + 1]
        field = np.rollaxis(np.rollaxis(field, 3, 1), 3, lpd + 1)

        # Reshape the data:
        # v[nx,lpd+1,ny,lpd+1,nz,lpd+1] to v[nx*(lpd+1),ny*(lpd+1),nz*(lpd+1)]
        field = field.reshape(new_shape, order="C")

        # XXX: Attempt to do this in one step.
        for axis, count in enumerate(new_shape):
            # Mask the duplicate values.
            mask = np.ones(count, dtype="bool")
            mask[::lpd + 1][1:] = False
            # Remove them by compressing the array.
            field = field.compress(mask, axis=axis)

        return field[:, :, ::-1]

    def parse_component(self, component):
        """
        Helper function parsing a whole component.

        :param component: The component name.
        :type component: basestring
        """
        # If a real component,
        if component in list(self.components.keys()):
            self._parse_component(component)
            return
        elif component not in self.available_derived_components:
            msg = "Component %s is unknown" % component
            raise ValueError(msg)

        if component == "vp":
            self._parse_component("lambda")
            self._parse_component("mu")
            self._parse_component("rhoinv")
            lambda_ = self.parsed_components["lambda"]
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["vp"] = \
                np.sqrt(((lambda_ + 2.0 * mu) * rhoinv)) / 1000.0
        elif component == "vsh":
            self._parse_component("mu")
            self._parse_component("rhoinv")
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["vsh"] = np.sqrt((mu * rhoinv)) / 1000.0
        elif component == "vsv":
            self._parse_component("mu")
            self._parse_component("rhoinv")
            self._parse_component("B")
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            b = self.parsed_components["B"]
            self.parsed_components["vsv"] = \
                np.sqrt((mu + b) * rhoinv) / 1000.0
        elif component == "rho":
            self._parse_component("rhoinv")
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["rho"] = 1.0 / rhoinv

    def _parse_component(self, component):
        """
        Parses the specified component.
        """
        if component in self.parsed_components:
            return
        # Allocate empty array with the necessary dimensions.
        data = np.empty(
            (self.setup["point_count_in_x"], self.setup["point_count_in_y"],
             self.setup["point_count_in_z"]),
            dtype="float32")

        for _i, domain in enumerate(self.setup["subdomains"]):
            x_min, x_max = domain["boundaries_x"]
            y_min, y_max = domain["boundaries_y"]
            z_min, z_max = domain["boundaries_z"]

            # Minimum indices
            x_min, y_min, z_min = [
                self.lagrange_polynomial_degree * _j
                for _j in (x_min, y_min, z_min)
            ]
            # Maximum indices
            x_max, y_max, z_max = [
                self.lagrange_polynomial_degree * (_j + 1)
                for _j in (x_max, y_max, z_max)
            ]

            # Merge into data.
            data[x_min: x_max + 1, y_min: y_max + 1, z_min: z_max + 1] = \
                self._read_single_box(component, _i)

        self.parsed_components[component] = data

    def _calculate_final_dimensions(self):
        """
        Calculates the total number of elements and points and also the size of
        the final array per component.
        """
        # Elements in each directions.
        x, y, z = (self.setup["boundaries_x"][1] -
                   self.setup["boundaries_x"][0] + 1,
                   self.setup["boundaries_y"][1] -
                   self.setup["boundaries_y"][0] + 1,
                   self.setup["boundaries_z"][1] -
                   self.setup["boundaries_z"][0] + 1)

        self.setup["total_element_count"] = x * y * z
        self.setup["total_point_count"] = (x * y * z) * \
            (self.lagrange_polynomial_degree + 1) ** 3

        # This is the actual point count with removed duplicates. Much
        # smaller because each element shared a large number of elements
        # with its neighbours.
        self.setup["point_count_in_x"] = \
            (x * self.lagrange_polynomial_degree + 1)
        self.setup["point_count_in_y"] = \
            (y * self.lagrange_polynomial_degree + 1)
        self.setup["point_count_in_z"] = \
            (z * self.lagrange_polynomial_degree + 1)
        self.setup["total_point_count_without_duplicates"] = (
            self.setup["point_count_in_x"] * self.setup["point_count_in_y"] *
            self.setup["point_count_in_z"])

    def _get_collocation_points_along_axis(self, min_value, max_value, count):
        """
        Calculates count collocation points from min_value to max_value as
        they would be used by a simulation. The border elements are not
        repeated.

        :param min_value: The minimum value.
        :param max_value: The maximum value.
        :param count: The number of values.
        """
        # Normalize from 0.0 to 1.0
        coll_points = get_lpd_sampling_points(self.lagrange_polynomial_degree)
        coll_points += 1.0
        coll_points /= 2.0

        # Some view and reshaping tricks to ensure performance. Probably not
        # needed.
        points = np.empty(count)
        lpd = self.lagrange_polynomial_degree
        p_view = points[:count - 1].view().reshape(((count - 1) / lpd, lpd))
        for _i in range(p_view.shape[0]):
            p_view[_i] = _i
        points[-1] = points[-2] + 1
        for _i, value in enumerate(coll_points[1:-1]):
            points[_i + 1::lpd] += value

        # Normalize from min_value to max_value.
        points /= points.max()
        points *= abs(max_value - min_value)
        points += min_value
        return points

    def get_closest_gll_index(self, coord, value):
        if coord == "depth":
            return np.argmin(np.abs(self.collocation_points_depth - value))
        elif coord == "longitude":
            return np.argmin(np.abs(self.collocation_points_lngs - value))
        elif coord == "latitude":
            return np.argmin(np.abs(self.collocation_points_lats[::-1] -
                                    value))

    def plot_depth_slice(self,
                         component,
                         depth_in_km,
                         m,
                         absolute_values=True):
        """
        Plots a depth slice.

        :param component: The component to plot.
        :type component: basestring
        :param depth_in_km: The depth in km to plot. If the exact depth does
             not exists, the nearest neighbour will be plotted.
        :type depth_in_km: integer or float
        :param m: Basemap instance.
        """
        depth_index = self.get_closest_gll_index("depth", depth_in_km)

        # No need to do anything if the currently plotted slice is already
        # plotted. This is useful for interactive use when the desired depth
        # is changed but the closest GLL collocation point is still the same.
        if hasattr(m, "_plotted_depth_slice"):
            # Use a tuple of relevant parameters.
            if m._plotted_depth_slice == (self.directory, depth_index,
                                          component, absolute_values):
                return None

        data = self.parsed_components[component]

        depth = self.collocation_points_depth[depth_index]
        lngs = self.collocation_points_lngs
        lats = self.collocation_points_lats

        # Rotate data if needed.
        lon, lat = np.meshgrid(lngs, lats)
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            lon_shape = lon.shape
            lat_shape = lat.shape
            lon.shape = lon.size
            lat.shape = lat.size
            lat, lon = rotations.rotate_lat_lon(
                lat, lon, self.domain.rotation_axis,
                self.domain.rotation_angle_in_degree)
            lon.shape = lon_shape
            lat.shape = lat_shape

        x, y = m(lon, lat)
        depth_data = data[::-1, :, depth_index]

        # Plot values relative to AK135.
        if not absolute_values:
            cmp_map = {"rho": "density", "vp": "vp", "vsh": "vs", "vsv": "vs"}

            factor = {
                "rho": 1000.0,
                "vp": 1.0,
                "vsh": 1.0,
                "vsv": 1.0,
            }

            if component not in cmp_map:
                vmin, vmax = depth_data.min(), depth_data.max()
                vmedian = np.median(depth_data)
                offset = max(abs(vmax - vmedian), abs(vmedian - vmin))

                if vmax - vmin == 0:
                    offset = 0.01

                vmin = vmedian - offset
                vmax = vmedian + offset
            else:
                reference_value = self.one_d_model.get_value(
                    cmp_map[component], depth) * factor[component]

                depth_data = (depth_data - reference_value) / reference_value
                depth_data *= 100.0
                offset = np.abs(depth_data)
                try:
                    offset = offset[offset < 50].max()
                except BaseException:
                    offset = offset.max()
                vmin = -offset
                vmax = offset
        else:
            vmin, vmax = depth_data.min(), depth_data.max()
            vmedian = np.median(depth_data)
            offset = max(abs(vmax - vmedian), abs(vmedian - vmin))

            min_delta = abs(vmax * 0.005)
            if (vmax - vmin) < min_delta:
                offset = min_delta

            vmin = vmedian - offset
            vmax = vmedian + offset

        # Remove an existing pcolormesh if it exists. This does not hurt in
        # any case but is useful for interactive use.
        if hasattr(m, "_depth_slice"):
            m._depth_slice.remove()
            del m._depth_slice

        im = m.pcolormesh(x,
                          y,
                          depth_data,
                          cmap=tomo_colormap,
                          vmin=vmin,
                          vmax=vmax)
        m._depth_slice = im

        # Store what is currently plotted.
        m._plotted_depth_slice = (self.directory, depth_index, component,
                                  absolute_values)

        return {"depth": depth, "mesh": im, "data": depth_data}

    def get_depth_profile(self, component, latitude, longitude):
        """
        Returns a depth profile of the model at the requested at the
        GLL points closest do latitude and longitude.

        :param component: The component of the model.
        :param latitude: The latitude.
        :param longitude: The longitude.
        """
        # Need to rotate latitude and longitude.
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            latitude, longitude = rotations.rotate_lat_lon(
                latitude, longitude, self.domain.rotation_axis,
                -1.0 * self.domain.rotation_angle_in_degree)

        x_index = self.get_closest_gll_index("latitude", latitude)
        y_index = self.get_closest_gll_index("longitude", longitude)

        data = self.parsed_components[component]
        depths = self.collocation_points_depth
        values = data[x_index, y_index, :]

        lat = self.collocation_points_lats[::-1][x_index]
        lng = self.collocation_points_lngs[y_index]

        # Rotate back.
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            lat, lng = rotations.rotate_lat_lon(
                lat, lng, self.domain.rotation_axis,
                self.domain.rotation_angle_in_degree)

        return {
            "depths": depths,
            "values": values,
            "latitude": lat,
            "longitude": lng
        }

    def __str__(self):
        """
        Eases interactive working.
        """
        ret_str = "Raw SES3D Model (split in %i parts)\n" % \
            (self.setup["total_cpu_count"])
        ret_str += "\tSetup:\n"
        ret_str += "\t\tLatitude: {:.2f} - {:.2f}\n".format(*[
            rotations.colat2lat(_i)
            for _i in self.setup["physical_boundaries_x"][::-1]
        ])
        ret_str += "\t\tLongitude: %.2f - %.2f\n" % \
            self.setup["physical_boundaries_y"]
        ret_str += "\t\tDepth in km: {:.2f} - {:.2f}\n".format(*[
            6371 - _i / 1000
            for _i in self.setup["physical_boundaries_z"][::-1]
        ])
        ret_str += "\t\tTotal element count: %i\n" % \
            self.setup["total_element_count"]
        ret_str += "\t\tTotal collocation point count: %i (without " \
            "duplicates: %i)\n" % (
                self.setup["total_point_count"],
                self.setup["total_point_count_without_duplicates"])
        ret_str += "\tMemory requirement per component: %.1f MB\n" % \
            ((self.setup["total_point_count_without_duplicates"] * 4) /
                (1024.0 ** 2))
        ret_str += "\tAvailable components: %s\n" % (", ".join(
            sorted(self.components.keys())))
        ret_str += "\tAvailable derived components: %s\n" % (", ".join(
            sorted(self.available_derived_components)))
        ret_str += "\tParsed components: %s" % (", ".join(
            sorted(self.parsed_components.keys())))
        return ret_str

    def _read_boxfile(self):
        setup = {"subdomains": []}
        with open(self.boxfile, "rU") as fh:
            # The first 14 lines denote the header
            lines = fh.readlines()[14:]
            # Strip lines and remove empty lines.
            lines = [_i.strip() for _i in lines if _i.strip()]

            # The next 4 are the global CPU distribution.
            setup["total_cpu_count"] = int(lines.pop(0))
            setup["cpu_count_in_x_direction"] = int(lines.pop(0))
            setup["cpu_count_in_y_direction"] = int(lines.pop(0))
            setup["cpu_count_in_z_direction"] = int(lines.pop(0))

            if set(lines[0]) == set("-"):
                lines.pop(0)
            # Small sanity check.
            if setup["total_cpu_count"] != setup["cpu_count_in_x_direction"] *\
                    setup["cpu_count_in_y_direction"] * \
                    setup["cpu_count_in_z_direction"]:
                msg = ("Invalid boxfile. Total and individual processor "
                       "counts do not match.")
                raise ValueError(msg)

            # Now parse the rest of file which contains the subdomains.
            def subdomain_generator(data):
                """
                Simple generator looping over each defined box and yielding
                a dictionary for each.

                :param data: The text.
                """
                while data:
                    subdom = {}
                    # Convert both indices to 0-based indices
                    subdom["single_index"] = int(data.pop(0)) - 1
                    subdom["multi_index"] = [
                        int(x) - 1 for x in data.pop(0).split()
                    ]
                    subdom["boundaries_x"] = list(map(int,
                                                      data.pop(0).split()))
                    subdom["boundaries_y"] = list(map(int,
                                                      data.pop(0).split()))
                    subdom["boundaries_z"] = list(map(int,
                                                      data.pop(0).split()))
                    # Convert radians to degree.
                    subdom["physical_boundaries_x"] = [
                        math.degrees(float(x)) for x in data.pop(0).split()
                    ]
                    subdom["physical_boundaries_y"] = [
                        math.degrees(float(x)) for x in data.pop(0).split()
                    ]
                    # z is in meter.
                    subdom["physical_boundaries_z"] = \
                        list(map(float, data.pop(0).split()))
                    for component in ("x", "y", "z"):
                        idx = "boundaries_%s" % component
                        index_count = subdom[idx][1] - subdom[idx][0] + 1
                        subdom["index_%s_count" % component] = index_count
                        # The boxfiles are slightly awkward in that the indices
                        # are not really continuous. For example if one box
                        # has 22 as the last index, the first index of the next
                        # box will also be 22, even though it should be 23. The
                        # next snippet attempts to fix this deficiency.
                        offset = int(
                            round(subdom[idx][0] / float(index_count - 1)))
                        subdom[idx][0] += offset
                        subdom[idx][1] += offset
                    # Remove separator_line if existent.
                    if set(lines[0]) == set("-"):
                        lines.pop(0)
                    yield subdom

            # Sort them after with the single index.
            setup["subdomains"] = sorted(list(subdomain_generator(lines)),
                                         key=lambda x: x["single_index"])
            # Do some more sanity checks.
            if len(setup["subdomains"]) != setup["total_cpu_count"]:
                msg = ("Invalid boxfile. Number of processors and subdomains "
                       "to not match.")
                raise ValueError(msg)
            for component in ("x", "y", "z"):
                idx = "index_%s_count" % component
                if len(set([_i[idx] for _i in setup["subdomains"]])) != 1:
                    msg = ("Invalid boxfile. Unequal %s index count across "
                           "subdomains.") % component
                    raise ValueError(msg)

            # Now generate the absolute indices for the whole domains.
            for component in ("x", "y", "z"):
                setup["boundaries_%s" %
                      component] = (min([
                          _i["boundaries_%s" % component][0]
                          for _i in setup["subdomains"]
                      ]),
                                    max([
                                        _i["boundaries_%s" % component][1]
                                        for _i in setup["subdomains"]
                                    ]))
                setup["physical_boundaries_%s" %
                      component] = (min([
                          _i["physical_boundaries_%s" % component][0]
                          for _i in setup["subdomains"]
                      ]),
                                    max([
                                        _i["physical_boundaries_%s" %
                                           component][1]
                                        for _i in setup["subdomains"]
                                    ]))

            return setup
Esempio n. 4
0
class RawSES3DModelHandler(object):
    """
    Class able to deal with a directory of raw SES3D 4.0 models.

    An earth model directory is defined by containing:
        * boxfile              -> File describing the discretization
        * A0-A[XX]             -> Anisotropic parameters (one per CPU)
        * B0-B[XX]             -> Anisotropic parameters (one per CPU)
        * C0-C[XX]             -> Anisotropic parameters (one per CPU)
        * lambda0 - lambda[XX] -> Elastic parameters (one per CPU)
        * mu0 - mu[XX]         -> Elastic parameters (one per CPU)
        * rhoinv0 - rhoinv[XX] -> Elastic parameters (one per CPU)
        * Q0 - Q[XX]           -> Elastic parameters (one per CPU)

    A kernel directory is defined by containing:
        * boxfile              -> File describing the discretization
        * grad_cp_[XX]_[XXXX]
        * grad_csh_[XX]_[XXXX]
        * grad_csv_[XX]_[XXXX]
        * grad_rho_[XX]_[XXXX]

    A wavefield directory contains the following files:
        * boxfile              -> File describing the discretization
        * vx_[xx]_[timestep]
        * vy_[xx]_[timestep]
        * vz_[xx]_[timestep]
    """
    def __init__(self, directory, domain, model_type="earth_model"):
        """
        The init function.

        :param directory: The directory where the earth model or kernel is
            located.
        :param model_type: Determined the type of model loaded. Currently
            two are supported:
                * earth_model - The standard SES3D model files (default)
                * kernel - The kernels. Identifies by lots of grad_* files.
                * wavefield - The raw wavefields.
        """
        self.directory = directory
        self.boxfile = os.path.join(self.directory, "boxfile")
        if not os.path.exists(self.boxfile):
            msg = "boxfile not found. Wrong directory?"
            raise ValueError(msg)

        # Read the boxfile.
        self.setup = self._read_boxfile()

        self.domain = domain
        self.model_type = model_type

        self.one_d_model = OneDimensionalModel("ak135-f")

        if model_type == "earth_model":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["A", "B", "C", "lambda", "mu", "rhoinv", "Q"]
            self.available_derived_components = ["vp", "vsh", "vsv", "rho"]
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                # Check that the naming is continuous.
                all_good = True
                for _i in xrange(len(self.setup["subdomains"])):
                    if os.path.join(directory,
                                    "%s%i" % (component, _i)) in files:
                        continue
                    all_good = False
                    break
                if all_good is False:
                    msg = "Naming for component %s is off. It will be skipped."
                    warnings.warn(msg)
                    continue
                # They also all need to have the same size.
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                # Sort the files by ascending number.
                files.sort(key=lambda x: int(re.findall(r"\d+$",
                                             (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        elif model_type == "wavefield":
            components = ["vz", "vx", "vy", "vz"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(os.path.join(directory, "%s_*_*" %
                                  component))
                if not files:
                    continue
                timesteps = collections.defaultdict(list)
                for filename in files:
                    timestep = int(os.path.basename(filename).split("_")[-1])
                    timesteps[timestep].append(filename)

                for timestep, filenames in timesteps.iteritems():
                    self.components["%s %s" % (component, timestep)] = \
                        {"filenames": sorted(
                            filenames,
                            key=lambda x: int(
                                os.path.basename(x).split("_")[1]))}
        elif model_type == "kernel":
            # Now check what different models are available in the directory.
            # This information is also used to infer the degree of the used
            # lagrange polynomial.
            components = ["grad_cp", "grad_csh", "grad_csv", "grad_rho"]
            self.available_derived_components = []
            self.components = {}
            self.parsed_components = {}
            for component in components:
                files = glob.glob(
                    os.path.join(directory, "%s_[0-9]*" % component))
                if len(files) != len(self.setup["subdomains"]):
                    continue
                if len(set([os.path.getsize(_i) for _i in files])) != 1:
                    msg = ("Component %s has the right number of model files "
                           "but they are not of equal size") % component
                    warnings.warn(msg)
                    continue
                    # Sort the files by ascending number.
                files.sort(key=lambda x: int(
                    re.findall(r"\d+$",
                               (os.path.basename(x)))[0]))
                self.components[component] = {"filenames": files}
        else:
            msg = "model_type '%s' not known." % model_type
            raise ValueError(msg)

        # All files for a single component have the same size. Now check that
        # all files have the same size.
        unique_filesizes = len(list(set([
            os.path.getsize(_i["filenames"][0])
            for _i in self.components.itervalues()])))
        if unique_filesizes != 1:
            msg = ("The different components in the folder do not have the "
                   "same number of samples")
            raise ValueError(msg)

        # Now calculate the lagrange polynomial degree. All necessary
        # information is present.
        size = os.path.getsize(self.components.values()[0]["filenames"][0])
        sd = self.setup["subdomains"][0]
        x, y, z = sd["index_x_count"], sd["index_y_count"], sd["index_z_count"]
        self.lagrange_polynomial_degree = \
            int(round(((size * 0.25) / (x * y * z)) ** (1.0 / 3.0) - 1))

        self._calculate_final_dimensions()

        # Setup the boundaries.
        self.lat_bounds = [
            rotations.colat2lat(_i)
            for _i in self.setup["physical_boundaries_x"][::-1]]
        self.lng_bounds = self.setup["physical_boundaries_y"]
        self.depth_bounds = [
            6371 - _i / 1000.0 for _i in self.setup["physical_boundaries_z"]]

        self.collocation_points_lngs = self._get_collocation_points_along_axis(
            self.lng_bounds[0], self.lng_bounds[1],
            self.setup["point_count_in_y"])
        self.collocation_points_lats = self._get_collocation_points_along_axis(
            self.lat_bounds[0], self.lat_bounds[1],
            self.setup["point_count_in_x"])
        self.collocation_points_depth = \
            self._get_collocation_points_along_axis(
                self.depth_bounds[1], self.depth_bounds[0],
                self.setup["point_count_in_z"])[::-1]

    def _read_single_box(self, component, file_number):
        """
        This function reads Ses3ds raw binary files, e.g. 3d velocity field
        snapshots, as well as model parameter files or sensitivity kernels. It
        returns the field as an array of rank 3 with shape (nx*lpd+1, ny*lpd+1,
        nz*lpd+1), discarding the duplicates by default.
        """
        # Get the file and the corresponding domain.
        filename = self.components[component]["filenames"][file_number]
        domain = self.setup["subdomains"][file_number]

        lpd = self.lagrange_polynomial_degree

        shape = (domain["index_x_count"], domain["index_y_count"],
                 domain["index_z_count"], lpd + 1, lpd + 1, lpd + 1)

        # Take care: The first and last four bytes in the arrays are invalid
        #  due to them being written by Fortran.
        with open(filename, "rb") as open_file:
            field = np.ndarray(shape, buffer=open_file.read()[4:-4],
                               dtype="float32", order="F")

        # Calculate the new shape by multiplying every dimension with lpd + 1
        # value for every dimension.
        new_shape = [_i * _j for _i, _j in zip(shape[:3], shape[3:])]

        # Reorder the axes:
        # v[x, y, z, lpd + 1 ,lpd + 1, lpd + 1] -> v[x, lpd + 1, y, z,
        # lpd + 1, lpd + 1] -> v[x, lpd + 1, y, lpd + 1, z, lpd + 1]
        field = np.rollaxis(np.rollaxis(field, 3, 1), 3, lpd + 1)

        # Reshape the data:
        # v[nx,lpd+1,ny,lpd+1,nz,lpd+1] to v[nx*(lpd+1),ny*(lpd+1),nz*(lpd+1)]
        field = field.reshape(new_shape, order="C")

        # XXX: Attempt to do this in one step.
        for axis, count in enumerate(new_shape):
            # Mask the duplicate values.
            mask = np.ones(count, dtype="bool")
            mask[::lpd + 1][1:] = False
            # Remove them by compressing the array.
            field = field.compress(mask, axis=axis)

        return field[:, :, ::-1]

    def parse_component(self, component):
        """
        Helper function parsing a whole component.

        :param component: The component name.
        :type component: basestring
        """
        # If a real component,
        if component in self.components.keys():
            self._parse_component(component)
            return
        elif component not in self.available_derived_components:
            msg = "Component %s is unknown" % component
            raise ValueError(msg)

        if component == "vp":
            self._parse_component("lambda")
            self._parse_component("mu")
            self._parse_component("rhoinv")
            lambda_ = self.parsed_components["lambda"]
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["vp"] = \
                np.sqrt(((lambda_ + 2.0 * mu) * rhoinv)) / 1000.0
        elif component == "vsh":
            self._parse_component("mu")
            self._parse_component("rhoinv")
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["vsh"] = np.sqrt((mu * rhoinv)) / 1000.0
        elif component == "vsv":
            self._parse_component("mu")
            self._parse_component("rhoinv")
            self._parse_component("B")
            mu = self.parsed_components["mu"]
            rhoinv = self.parsed_components["rhoinv"]
            b = self.parsed_components["B"]
            self.parsed_components["vsv"] = \
                np.sqrt((mu + b) * rhoinv) / 1000.0
        elif component == "rho":
            self._parse_component("rhoinv")
            rhoinv = self.parsed_components["rhoinv"]
            self.parsed_components["rho"] = 1.0 / rhoinv

    def _parse_component(self, component):
        """
        Parses the specified component.
        """
        if component in self.parsed_components:
            return
        # Allocate empty array with the necessary dimensions.
        data = np.empty((
            self.setup["point_count_in_x"],
            self.setup["point_count_in_y"], self.setup["point_count_in_z"]),
            dtype="float32")

        for _i, domain in enumerate(self.setup["subdomains"]):
            x_min, x_max = domain["boundaries_x"]
            y_min, y_max = domain["boundaries_y"]
            z_min, z_max = domain["boundaries_z"]

            # Minimum indices
            x_min, y_min, z_min = [self.lagrange_polynomial_degree * _j
                                   for _j in (x_min, y_min, z_min)]
            # Maximum indices
            x_max, y_max, z_max = [self.lagrange_polynomial_degree * (_j + 1)
                                   for _j in (x_max, y_max, z_max)]

            # Merge into data.
            data[x_min: x_max + 1, y_min: y_max + 1, z_min: z_max + 1] = \
                self._read_single_box(component, _i)

        self.parsed_components[component] = data

    def _calculate_final_dimensions(self):
        """
        Calculates the total number of elements and points and also the size of
        the final array per component.
        """
        # Elements in each directions.
        x, y, z = (
            self.setup["boundaries_x"][1] - self.setup["boundaries_x"][0] + 1,
            self.setup["boundaries_y"][1] - self.setup["boundaries_y"][0] + 1,
            self.setup["boundaries_z"][1] - self.setup["boundaries_z"][0] + 1)

        self.setup["total_element_count"] = x * y * z
        self.setup["total_point_count"] = (x * y * z) * \
            (self.lagrange_polynomial_degree + 1) ** 3

        # This is the actual point count with removed duplicates. Much
        # smaller because each element shared a large number of elements
        # with its neighbours.
        self.setup["point_count_in_x"] = \
            (x * self.lagrange_polynomial_degree + 1)
        self.setup["point_count_in_y"] = \
            (y * self.lagrange_polynomial_degree + 1)
        self.setup["point_count_in_z"] = \
            (z * self.lagrange_polynomial_degree + 1)
        self.setup["total_point_count_without_duplicates"] = (
            self.setup["point_count_in_x"] *
            self.setup["point_count_in_y"] *
            self.setup["point_count_in_z"])

    def _get_collocation_points_along_axis(self, min_value, max_value, count):
        """
        Calculates count collocation points from min_value to max_value as
        they would be used by a simulation. The border elements are not
        repeated.

        :param min_value: The minimum value.
        :param max_value: The maximum value.
        :param count: The number of values.
        """
        # Normalize from 0.0 to 1.0
        coll_points = get_lpd_sampling_points(self.lagrange_polynomial_degree)
        coll_points += 1.0
        coll_points /= 2.0

        # Some view and reshaping tricks to ensure performance. Probably not
        # needed.
        points = np.empty(count)
        lpd = self.lagrange_polynomial_degree
        p_view = points[:count - 1].view().reshape(((count - 1) / lpd, lpd))
        for _i in xrange(p_view.shape[0]):
            p_view[_i] = _i
        points[-1] = points[-2] + 1
        for _i, value in enumerate(coll_points[1:-1]):
            points[_i + 1::lpd] += value

        # Normalize from min_value to max_value.
        points /= points.max()
        points *= abs(max_value - min_value)
        points += min_value
        return points

    def get_closest_gll_index(self, coord, value):
        if coord == "depth":
            return np.argmin(np.abs(self.collocation_points_depth - value))
        elif coord == "longitude":
            return np.argmin(np.abs(self.collocation_points_lngs - value))
        elif coord == "latitude":
            return np.argmin(np.abs(self.collocation_points_lats[::-1] -
                                    value))

    def plot_depth_slice(self, component, depth_in_km, m,
                         absolute_values=True):
        """
        Plots a depth slice.

        :param component: The component to plot.
        :type component: basestring
        :param depth_in_km: The depth in km to plot. If the exact depth does
             not exists, the nearest neighbour will be plotted.
        :type depth_in_km: integer or float
        :param m: Basemap instance.
        """
        depth_index = self.get_closest_gll_index("depth", depth_in_km)

        # No need to do anything if the currently plotted slice is already
        # plotted. This is useful for interactive use when the desired depth
        # is changed but the closest GLL collocation point is still the same.
        if hasattr(m, "_plotted_depth_slice"):
            # Use a tuple of relevant parameters.
            if m._plotted_depth_slice == (self.directory, depth_index,
                                          component, absolute_values):
                return None

        data = self.parsed_components[component]

        depth = self.collocation_points_depth[depth_index]
        lngs = self.collocation_points_lngs
        lats = self.collocation_points_lats

        # Rotate data if needed.
        lon, lat = np.meshgrid(lngs, lats)
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            lon_shape = lon.shape
            lat_shape = lat.shape
            lon.shape = lon.size
            lat.shape = lat.size
            lat, lon = rotations.rotate_lat_lon(
                lat, lon, self.domain.rotation_axis,
                self.domain.rotation_angle_in_degree)
            lon.shape = lon_shape
            lat.shape = lat_shape

        x, y = m(lon, lat)
        depth_data = data[::-1, :, depth_index]

        # Plot values relative to AK135.
        if not absolute_values:
            cmp_map = {
                "rho": "density",
                "vp": "vp",
                "vsh": "vs",
                "vsv": "vs"
            }

            factor = {
                "rho": 1000.0,
                "vp": 1.0,
                "vsh": 1.0,
                "vsv": 1.0,
            }

            if component not in cmp_map:
                vmin, vmax = depth_data.min(), depth_data.max()
                vmedian = np.median(depth_data)
                offset = max(abs(vmax - vmedian), abs(vmedian - vmin))

                if vmax - vmin == 0:
                    offset = 0.01

                vmin = vmedian - offset
                vmax = vmedian + offset
            else:
                reference_value = self.one_d_model.get_value(
                    cmp_map[component], depth) * factor[component]

                depth_data = (depth_data - reference_value) / reference_value
                depth_data *= 100.0
                offset = np.abs(depth_data)
                try:
                    offset = offset[offset < 50].max()
                except:
                    offset = offset.max()
                vmin = -offset
                vmax = offset
        else:
            vmin, vmax = depth_data.min(), depth_data.max()
            vmedian = np.median(depth_data)
            offset = max(abs(vmax - vmedian), abs(vmedian - vmin))

            min_delta = abs(vmax * 0.005)
            if (vmax - vmin) < min_delta:
                offset = min_delta

            vmin = vmedian - offset
            vmax = vmedian + offset

        # Remove an existing pcolormesh if it exists. This does not hurt in
        # any case but is useful for interactive use.
        if hasattr(m, "_depth_slice"):
            m._depth_slice.remove()
            del m._depth_slice

        im = m.pcolormesh(x, y, depth_data, cmap=tomo_colormap, vmin=vmin,
                          vmax=vmax)
        m._depth_slice = im

        # Store what is currently plotted.
        m._plotted_depth_slice = (self.directory, depth_index, component,
                                  absolute_values)

        return {
            "depth": depth,
            "mesh": im,
            "data": depth_data
        }

    def get_depth_profile(self, component, latitude, longitude):
        """
        Returns a depth profile of the model at the requested at the
        GLL points closest do latitude and longitude.

        :param component: The component of the model.
        :param latitude: The latitude.
        :param longitude: The longitude.
        """
        # Need to rotate latitude and longitude.
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            latitude, longitude = rotations.rotate_lat_lon(
                latitude, longitude, self.domain.rotation_axis,
                -1.0 * self.domain.rotation_angle_in_degree)

        x_index = self.get_closest_gll_index("latitude", latitude)
        y_index = self.get_closest_gll_index("longitude", longitude)

        data = self.parsed_components[component]
        depths = self.collocation_points_depth
        values = data[x_index, y_index, :]

        lat = self.collocation_points_lats[::-1][x_index]
        lng = self.collocation_points_lngs[y_index]

        # Rotate back.
        if hasattr(self.domain, "rotation_axis") and \
                self.domain.rotation_axis and \
                self.domain.rotation_angle_in_degree:
            lat, lng = rotations.rotate_lat_lon(
                lat, lng, self.domain.rotation_axis,
                self.domain.rotation_angle_in_degree)

        return {
            "depths": depths,
            "values": values,
            "latitude": lat,
            "longitude": lng}

    def __str__(self):
        """
        Eases interactive working.
        """
        ret_str = "Raw SES3D Model (split in %i parts)\n" % \
            (self.setup["total_cpu_count"])
        ret_str += "\tSetup:\n"
        ret_str += "\t\tLatitude: {:.2f} - {:.2f}\n".format(
            *[rotations.colat2lat(_i)
              for _i in self.setup["physical_boundaries_x"][::-1]])
        ret_str += "\t\tLongitude: %.2f - %.2f\n" % \
            self.setup["physical_boundaries_y"]
        ret_str += "\t\tDepth in km: {:.2f} - {:.2f}\n".format(
            *[6371 - _i / 1000
              for _i in self.setup["physical_boundaries_z"][::-1]])
        ret_str += "\t\tTotal element count: %i\n" % \
            self.setup["total_element_count"]
        ret_str += "\t\tTotal collocation point count: %i (without " \
            "duplicates: %i)\n" % (
                self.setup["total_point_count"],
                self.setup["total_point_count_without_duplicates"])
        ret_str += "\tMemory requirement per component: %.1f MB\n" % \
            ((self.setup["total_point_count_without_duplicates"] * 4) /
                (1024.0 ** 2))
        ret_str += "\tAvailable components: %s\n" % (", ".join(
            sorted(self.components.keys())))
        ret_str += "\tAvailable derived components: %s\n" % (", ".join(
            sorted(self.available_derived_components)))
        ret_str += "\tParsed components: %s" % (", ".join(
            sorted(self.parsed_components.keys())))
        return ret_str

    def _read_boxfile(self):
        setup = {"subdomains": []}
        with open(self.boxfile, "rU") as fh:
            # The first 14 lines denote the header
            lines = fh.readlines()[14:]
            # Strip lines and remove empty lines.
            lines = [_i.strip() for _i in lines if _i.strip()]

            # The next 4 are the global CPU distribution.
            setup["total_cpu_count"] = int(lines.pop(0))
            setup["cpu_count_in_x_direction"] = int(lines.pop(0))
            setup["cpu_count_in_y_direction"] = int(lines.pop(0))
            setup["cpu_count_in_z_direction"] = int(lines.pop(0))

            if set(lines[0]) == set("-"):
                lines.pop(0)
            # Small sanity check.
            if setup["total_cpu_count"] != setup["cpu_count_in_x_direction"] *\
                    setup["cpu_count_in_y_direction"] * \
                    setup["cpu_count_in_z_direction"]:
                msg = ("Invalid boxfile. Total and individual processor "
                       "counts do not match.")
                raise ValueError(msg)

            # Now parse the rest of file which contains the subdomains.
            def subdomain_generator(data):
                """
                Simple generator looping over each defined box and yielding
                a dictionary for each.

                :param data: The text.
                """
                while data:
                    subdom = {}
                    # Convert both indices to 0-based indices
                    subdom["single_index"] = int(data.pop(0)) - 1
                    subdom["multi_index"] = map(lambda x: int(x) - 1,
                                                data.pop(0).split())
                    subdom["boundaries_x"] = map(int, data.pop(0).split())
                    subdom["boundaries_y"] = map(int, data.pop(0).split())
                    subdom["boundaries_z"] = map(int, data.pop(0).split())
                    # Convert radians to degree.
                    subdom["physical_boundaries_x"] = map(
                        lambda x: math.degrees(float(x)), data.pop(0).split())
                    subdom["physical_boundaries_y"] = map(
                        lambda x: math.degrees(float(x)), data.pop(0).split())
                    # z is in meter.
                    subdom["physical_boundaries_z"] = \
                        map(float, data.pop(0).split())
                    for component in ("x", "y", "z"):
                        idx = "boundaries_%s" % component
                        index_count = subdom[idx][1] - subdom[idx][0] + 1
                        subdom["index_%s_count" % component] = index_count
                        # The boxfiles are slightly awkward in that the indices
                        # are not really continuous. For example if one box
                        # has 22 as the last index, the first index of the next
                        # box will also be 22, even though it should be 23. The
                        # next snippet attempts to fix this deficiency.
                        offset = int(round(subdom[idx][0] /
                                     float(index_count - 1)))
                        subdom[idx][0] += offset
                        subdom[idx][1] += offset
                    # Remove separator_line if existent.
                    if set(lines[0]) == set("-"):
                        lines.pop(0)
                    yield subdom
            # Sort them after with the single index.
            setup["subdomains"] = sorted(list(subdomain_generator(lines)),
                                         key=lambda x: x["single_index"])
            # Do some more sanity checks.
            if len(setup["subdomains"]) != setup["total_cpu_count"]:
                msg = ("Invalid boxfile. Number of processors and subdomains "
                       "to not match.")
                raise ValueError(msg)
            for component in ("x", "y", "z"):
                idx = "index_%s_count" % component
                if len(set([_i[idx] for _i in setup["subdomains"]])) != 1:
                    msg = ("Invalid boxfile. Unequal %s index count across "
                           "subdomains.") % component
                    raise ValueError(msg)

            # Now generate the absolute indices for the whole domains.
            for component in ("x", "y", "z"):
                setup["boundaries_%s" % component] = (
                    min([_i["boundaries_%s" % component][0]
                         for _i in setup["subdomains"]]),
                    max([_i["boundaries_%s" %
                         component][1] for _i in setup["subdomains"]]))
                setup["physical_boundaries_%s" % component] = (
                    min([_i["physical_boundaries_%s" % component][0] for
                         _i in setup["subdomains"]]),
                    max([_i["physical_boundaries_%s" % component][1] for _i in
                         setup["subdomains"]]))

            return setup