def load_from_dir(root_dir, model_index=None, G_weights=None, shift_in_w=True): args = json.load(open(os.path.join(root_dir, 'args.json'))) models_dir = os.path.join(root_dir, 'models') if model_index is None: models = os.listdir(models_dir) model_index = max([ int(name.split('.')[0].split('_')[-1]) for name in models if name.startswith('deformator') ]) if G_weights is None: G_weights = args['gan_weights'] if G_weights is None or not os.path.isfile(G_weights): print('Using default local G weights') G_weights = WEIGHTS[args['gan_type']] if isinstance(G_weights, dict): G_weights = G_weights[str(args['resolution'])] if 'resolution' not in args.keys(): args['resolution'] = 128 G = load_generator(args, G_weights, shift_in_w) deformator = LatentDeformator( shift_dim=G.dim_shift, input_dim=args['directions_count'] if 'directions_count' in args.keys() else None, out_dim=args['max_latent_dim'] if 'max_latent_dim' in args.keys() else None, type=DEFORMATOR_TYPE_DICT[args['deformator']]) if 'shift_predictor' not in args.keys( ) or args['shift_predictor'] == 'ResNet': shift_predictor = LatentShiftPredictor(G.dim_shift) elif args['shift_predictor'] == 'LeNet': shift_predictor = LeNetShiftPredictor( G.dim_shift, 1 if args['gan_type'] == 'SN_MNIST' else 3) deformator_model_path = os.path.join( models_dir, 'deformator_{}.pt'.format(model_index)) shift_model_path = os.path.join( models_dir, 'shift_predictor_{}.pt'.format(model_index)) if os.path.isfile(deformator_model_path): deformator.load_state_dict( torch.load(deformator_model_path, map_location=torch.device('cpu'))) if os.path.isfile(shift_model_path): shift_predictor.load_state_dict( torch.load(shift_model_path, map_location=torch.device('cpu'))) setattr( deformator, 'annotation', load_human_annotation(os.path.join(root_dir, HUMAN_ANNOTATION_FILE))) return deformator.eval().cuda(), G.eval().cuda(), shift_predictor.eval( ).cuda()
def load_from_dir(root_dir, model_index=None, G_weights=None, verbose=False): args = json.load(open(os.path.join(root_dir, 'args.json'))) models_dir = os.path.join(root_dir, 'models') if model_index is None: models = os.listdir(models_dir) model_index = max([ int(name.split('.')[0].split('_')[-1]) for name in models if name.startswith('deformator') ]) if verbose: print('using max index {}'.format(model_index)) if G_weights is None: G_weights = args['gan_weights'] if G_weights is None or not os.path.isfile(G_weights): if verbose: print('Using default local G weights') G_weights = WEIGHTS[args['gan_type']] if args['gan_type'] == 'BigGAN': G = make_big_gan(G_weights, args['target_class']).eval() elif args['gan_type'] in ['ProgGAN', 'PGGAN']: G = make_proggan(G_weights) else: G = make_external(G_weights) deformator = LatentDeformator( G.dim_z, type=DEFORMATOR_TYPE_DICT[args['deformator']]) if 'shift_predictor' not in args.keys( ) or args['shift_predictor'] == 'ResNet': shift_predictor = ResNetShiftPredictor(G.dim_z) elif args['shift_predictor'] == 'LeNet': shift_predictor = LeNetShiftPredictor( G.dim_z, 1 if args['gan_type'] == 'SN_MNIST' else 3) deformator_model_path = os.path.join( models_dir, 'deformator_{}.pt'.format(model_index)) shift_model_path = os.path.join( models_dir, 'shift_predictor_{}.pt'.format(model_index)) if os.path.isfile(deformator_model_path): deformator.load_state_dict(torch.load(deformator_model_path)) if os.path.isfile(shift_model_path): shift_predictor.load_state_dict(torch.load(shift_model_path)) # try to load dims annotation directions_json = os.path.join(root_dir, 'directions.json') if os.path.isfile(directions_json): with open(directions_json, 'r') as f: directions_dict = json.load(f, object_pairs_hook=OrderedDict) setattr(deformator, 'directions_dict', directions_dict) return deformator.eval().cuda(), G.eval().cuda(), shift_predictor.eval( ).cuda()
def main(): parser = argparse.ArgumentParser( description='GAN-based unsupervised segmentation train') parser.add_argument('--out', type=str, required=True) parser.add_argument('--gan_weights', type=str, default=WEIGHTS['BigGAN']) parser.add_argument('--deformator_weights', type=str, required=True) parser.add_argument('--deformator_type', type=str, choices=DEFORMATOR_TYPE_DICT.keys(), required=True) parser.add_argument('--background_dim', type=int, required=True) parser.add_argument('--classes', type=int, nargs='*', default=list(range(1000))) parser.add_argument('--device', type=int, default=0) parser.add_argument('--seed', type=int, default=2) parser.add_argument('--val_images_dir', type=str, default=None) parser.add_argument('--val_masks_dir', type=str, default=None) for key, val in SegmentationTrainParams().__dict__.items(): val_type = type(val) if key is not 'synthezing' else str parser.add_argument('--{}'.format(key), type=val_type, default=None) args = parser.parse_args() torch.random.manual_seed(args.seed) torch.cuda.set_device(args.device) # save run p save_command_run_params(args) if len(args.classes) == 0: print('using all ImageNet') args.classes = list(range(1000)) G = make_big_gan(args.gan_weights, args.classes).eval().cuda() deformator = LatentDeformator( G.dim_z, type=DEFORMATOR_TYPE_DICT[args.deformator_type]) deformator.load_state_dict( torch.load(args.deformator_weights, map_location=torch.device('cpu'))) deformator.eval().cuda() model = UNet().train().cuda() train_params = SegmentationTrainParams(**args.__dict__) print(f'run train with p: {train_params.__dict__}') train_segmentation(G, deformator, model, train_params, args.background_dim, args.out, val_dirs=[args.val_images_dir, args.val_masks_dir])
def objective(trial: optuna.trial.Trial): print(f"[Optuna]: Trial #{trial.number}") G = load_generator(args.__dict__, weights_path, args.w_shift) params = Params(**args.__dict__) params.batch_size = 128 params.directions_count = 200 params.deformator_lr = trial.suggest_float("deformator_lr", 1e-4, 1e-4, log=True) params.shift_predictor_lr = params.deformator_lr # params.torch_grad = True if trial.suggest_int("torch_grad", 0, 1) else False deformator = LatentDeformator(shift_dim=G.dim_shift, input_dim=params.directions_count, out_dim=params.max_latent_dim, type=DEFORMATOR_TYPE_DICT[args.deformator], random_init=args.deformator_random_init ).cuda() # deformator = MyDeformator(48*8*8, 48*8*8) if args.shift_predictor == 'ResNet': shift_predictor = LatentShiftPredictor(params.directions_count, args.shift_predictor_size).cuda() elif args.shift_predictor == 'LeNet': shift_predictor = LeNetShiftPredictor( params.directions_count, 1 if args.gan_type == 'SN_MNIST' else 3).cuda() # training args.shift_distribution = SHIFT_DISTRIDUTION_DICT[args.shift_distribution_key] # update dims with respect to the deformator if some of params are None params.directions_count = int(deformator.input_dim) params.max_latent_dim = int(deformator.out_dim) trainer = Trainer(params, out_dir=args.out, verbose=True) loss = trainer.train(G, deformator, shift_predictor, multi_gpu=args.multi_gpu, trial=trial) # my_save_results_charts(G, deformator, params, trainer.log_dir) compute_DVN(G, deformator, f'DVN_{args.gan_type}_{args.deformator}_{params.directions_count}.pt') return loss
def main(): parser = argparse.ArgumentParser(description='Latent space rectification') for key, val in Params().__dict__.items(): target_type = type(val) if val is not None else int parser.add_argument('--{}'.format(key), type=target_type, default=None) parser.add_argument('--out', type=str, required=True, help='results directory') parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys(), help='generator model type') parser.add_argument('--gan_weights', type=str, default=None, help='path to generator weights') parser.add_argument('--resolution', type=int, required=True) parser.add_argument('--target_class', nargs='+', type=int, default=[239], help='classes to use for conditional GANs') parser.add_argument('--deformator', type=str, default='ortho', choices=DEFORMATOR_TYPE_DICT.keys(), help='deformator type') parser.add_argument('--deformator_random_init', type=bool, default=True) parser.add_argument('--deformator_target', type=str, default='latent', choices=DEFORMATOR_TARGET_DICT.keys()) parser.add_argument('--deformator_conv_layer_index', type=int, default=3) parser.add_argument('--basis_vectors_path', type=str) parser.add_argument('--shift_predictor_size', type=int, help='reconstructor resolution') parser.add_argument('--shift_predictor', type=str, choices=['ResNet', 'LeNet'], default='ResNet', help='reconstructor type') parser.add_argument('--shift_distribution_key', type=str, choices=SHIFT_DISTRIDUTION_DICT.keys()) parser.add_argument('--make_videos', type=bool, default=True) parser.add_argument('--samples_for_videos', type=str, default=None) parser.add_argument('--video_interpolate', type=int, default=None) parser.add_argument('--seed', type=int, default=2) parser.add_argument('--device', type=int, default=0) parser.add_argument('--multi_gpu', type=bool, default=False, help='Run generator in parallel. Be aware of old pytorch versions:\ https://github.com/pytorch/pytorch/issues/17345') # model-specific parser.add_argument('--w_shift', type=bool, default=True, help='latent directions search in w-space for StyleGAN') args = parser.parse_args() torch.cuda.set_device(args.device) random.seed(args.seed) torch.random.manual_seed(args.seed) save_command_run_params(args) # init models if args.gan_weights is not None: weights_path = args.gan_weights else: weights_path = WEIGHTS[args.gan_type] G = load_generator(args.__dict__, weights_path, args.w_shift) if args.deformator_target == 'latent': deformator = LatentDeformator( shift_dim=G.dim_shift, input_dim=args.directions_count, out_dim=args.max_latent_dim, type=DEFORMATOR_TYPE_DICT[args.deformator], random_init=args.deformator_random_init ).cuda() elif args.deformator_target == 'weight_svd': deformator = WeightDeformatorSVDBasis( generator=G, conv_layer_ix=args.deformator_conv_layer_index, directions_count=args.directions_count ).cuda() G = G.cuda() dim_shift = args.directions_count elif args.deformator_target == 'weight_fixedbasis': assert args.basis_vectors_path is not None deformator = WeightDeformatorFixedBasis( generator=G, conv_layer_ix=args.deformator_conv_layer_index, directions_count=args.directions_count, basis_vectors_path=args.basis_vectors_path ).cuda() G = G.cuda() dim_shift = args.directions_count else: raise ValueError("Unknown deformator_target") if args.shift_predictor == 'ResNet': shift_predictor = LatentShiftPredictor( dim_shift, args.shift_predictor_size).cuda() elif args.shift_predictor == 'LeNet': shift_predictor = LeNetShiftPredictor( dim_shift, 1 if args.gan_type == 'SN_MNIST' else 3).cuda() # training args.shift_distribution = SHIFT_DISTRIDUTION_DICT[args.shift_distribution_key] params = Params(**args.__dict__) # update dims with respect to the deformator if some of params are None if args.deformator_target == 'latent': params.directions_count = int(deformator.input_dim) params.max_latent_dim = int(deformator.out_dim) trainer = Trainer(params, out_dir=args.out) trainer.train(G, deformator, shift_predictor, multi_gpu=args.multi_gpu) if args.make_videos: if 'weight_' not in args.deformator_target: sys.stderr.write("Making video is available only for weight deformations.\n") else: generate_videos(args, G, deformator) if args.deformator_target == 'latent': save_results_charts(G, deformator, params, trainer.log_dir)
def main(): parser = argparse.ArgumentParser( description='GAN-based unsupervised segmentation train') parser.add_argument('--args', type=str, default=None, help='json with all arguments') parser.add_argument('--out', type=str, required=True) parser.add_argument('--gan_weights', type=str, default=WEIGHTS['BigGAN']) parser.add_argument('--deformator_weights', type=str, required=True) parser.add_argument('--deformator_type', type=str, choices=DEFORMATOR_TYPE_DICT.keys(), required=True) parser.add_argument('--background_dim', type=int, required=True) parser.add_argument('--classes', type=int, nargs='*', default=list(range(1000))) parser.add_argument('--device', type=int, default=0) parser.add_argument('--seed', type=int, default=2) parser.add_argument('--val_images_dir', type=str) parser.add_argument('--val_masks_dir', type=str) for key, val in SegmentationTrainParams().__dict__.items(): parser.add_argument('--{}'.format(key), type=type(val), default=None) args = parser.parse_args() torch.random.manual_seed(args.seed) torch.cuda.set_device(args.device) if args.args is not None: with open(args.args) as args_json: args_dict = json.load(args_json) args.__dict__.update(**args_dict) # save run params if not os.path.isdir(args.out): os.makedirs(args.out) with open(os.path.join(args.out, 'args.json'), 'w') as args_file: json.dump(args.__dict__, args_file) with open(os.path.join(args.out, 'command.sh'), 'w') as command_file: command_file.write(' '.join(sys.argv)) command_file.write('\n') if len(args.classes) == 0: print('using all ImageNet') args.classes = list(range(1000)) G = make_big_gan(args.gan_weights, args.classes).eval().cuda() deformator = LatentDeformator( G.dim_z, type=DEFORMATOR_TYPE_DICT[args.deformator_type]) deformator.load_state_dict( torch.load(args.deformator_weights, map_location=torch.device('cpu'))) deformator.eval().cuda() model = UNet().train().cuda() train_params = SegmentationTrainParams(**args.__dict__) print('run train with params: {}'.format(train_params.__dict__)) train_segmentation(G, deformator, model, train_params, args.background_dim, args.out) if args.val_images_dir is not None: evaluate(model, args.val_images_dir, args.val_masks_dir, os.path.join(args.out, 'score.json'), 128)
def main(): tOption = TrainOptions() for key, val in Params().__dict__.items(): tOption.parser.add_argument('--{}'.format(key), type=type(val), default=val) tOption.parser.add_argument('--args', type=str, default=None, help='json with all arguments') tOption.parser.add_argument('--out', type=str, default='./output') tOption.parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys(), default='StyleGAN') tOption.parser.add_argument('--gan_weights', type=str, default=None) tOption.parser.add_argument('--target_class', type=int, default=239) tOption.parser.add_argument('--json', type=str) tOption.parser.add_argument('--deformator', type=str, default='proj', choices=DEFORMATOR_TYPE_DICT.keys()) tOption.parser.add_argument('--deformator_random_init', type=bool, default=False) tOption.parser.add_argument('--shift_predictor_size', type=int) tOption.parser.add_argument('--shift_predictor', type=str, choices=['ResNet', 'LeNet'], default='ResNet') tOption.parser.add_argument('--shift_distribution_key', type=str, choices=SHIFT_DISTRIDUTION_DICT.keys()) tOption.parser.add_argument('--seed', type=int, default=2) tOption.parser.add_argument('--device', type=int, default=0) tOption.parser.add_argument('--continue_train', type=bool, default=False) tOption.parser.add_argument('--deformator_path', type=str, default='output/models/deformator_90000.pt') tOption.parser.add_argument( '--shift_predictor_path', type=str, default='output/models/shift_predictor_190000.pt') args = tOption.parse() torch.cuda.set_device(args.device) random.seed(args.seed) torch.random.manual_seed(args.seed) if args.args is not None: with open(args.args) as args_json: args_dict = json.load(args_json) args.__dict__.update(**args_dict) # save run params #if not os.path.isdir(args.out): # os.makedirs(args.out) #with open(os.path.join(args.out, 'args.json'), 'w') as args_file: # json.dump(args.__dict__, args_file) #with open(os.path.join(args.out, 'command.sh'), 'w') as command_file: # command_file.write(' '.join(sys.argv)) # command_file.write('\n') # init models if args.gan_weights is not None: weights_path = args.gan_weights else: weights_path = WEIGHTS[args.gan_type] if args.gan_type == 'BigGAN': G = make_big_gan(weights_path, args.target_class).eval() elif args.gan_type == 'StyleGAN': G = make_stylegan( weights_path, net_info[args.stylegan.dataset]['resolution']).eval() elif args.gan_type == 'ProgGAN': G = make_proggan(weights_path).eval() else: G = make_external(weights_path).eval() #判断是对z还是w做latent code if args.model == 'stylegan': assert (args.stylegan.latent in ['z', 'w']), 'unknown latent space' if args.stylegan.latent == 'z': target_dim = G.dim_z else: target_dim = G.dim_w if args.shift_predictor == 'ResNet': shift_predictor = ResNetShiftPredictor( args.direction_size, args.shift_predictor_size).cuda() elif args.shift_predictor == 'LeNet': shift_predictor = LeNetShiftPredictor( args.direction_size, 1 if args.gan_type == 'SN_MNIST' else 3).cuda() if args.continue_train: deformator = LatentDeformator( direction_size=args.direction_size, out_dim=target_dim, type=DEFORMATOR_TYPE_DICT[args.deformator]).cuda() deformator.load_state_dict( torch.load(args.deformator_path, map_location=torch.device('cpu'))) shift_predictor.load_state_dict( torch.load(args.shift_predictor_path, map_location=torch.device('cpu'))) else: deformator = LatentDeformator( direction_size=args.direction_size, out_dim=target_dim, type=DEFORMATOR_TYPE_DICT[args.deformator], random_init=args.deformator_random_init).cuda() # transform graph_kwargs = util.set_graph_kwargs(args) transform_type = ['zoom', 'shiftx', 'color', 'shifty'] transform_model = EasyDict() for a_type in transform_type: model = graphs.find_model_using_name(args.model, a_type) g = model(**graph_kwargs) transform_model[a_type] = EasyDict(model=g) # training args.shift_distribution = SHIFT_DISTRIDUTION_DICT[ args.shift_distribution_key] trainer = Trainer(params=Params(**args.__dict__), out_dir=args.out, out_json=args.json, continue_train=args.continue_train) trainer.train(G, deformator, shift_predictor, transform_model)
def main(): parser = argparse.ArgumentParser(description='Latent space rectification') parser.add_argument('--out', type=str, default='./output') parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys(), default='StyleGAN') parser.add_argument('--gan_weights', type=str, default=None) parser.add_argument('--json', type=str) parser.add_argument('--deformator', type=str, default='ortho', choices=DEFORMATOR_TYPE_DICT.keys()) parser.add_argument('--deformator_path', type=str, default='output/models/deformator_490000.pt') parser.add_argument('--images_dir', type=str, default='output/images/') parser.add_argument('--shift_predictor_size', type=int) parser.add_argument('--shift_predictor', type=str, choices=['ResNet', 'LeNet'], default='ResNet') parser.add_argument('--shift_distribution_key', type=str, choices=SHIFT_DISTRIDUTION_DICT.keys()) parser.add_argument('--seed', type=int, default=5) parser.add_argument('--device', type=int, default=0) args = parser.parse_args() torch.cuda.set_device(args.device) # save run params if not os.path.isdir(args.out): os.makedirs(args.out) # init models if args.gan_weights is not None: weights_path = args.gan_weights else: weights_path = WEIGHTS[args.gan_type] if args.gan_type == 'BigGAN': G = make_big_gan(weights_path, args.target_class).eval() elif args.gan_type == 'StyleGAN': G = make_stylegan(weights_path) elif args.gan_type == 'ProgGAN': G = make_proggan(weights_path).eval() else: G = make_external(weights_path).eval() deformator = LatentDeformator( G.dim_z, type=DEFORMATOR_TYPE_DICT[args.deformator]).cuda() deformator.load_state_dict( torch.load(args.deformator_path, map_location=torch.device('cpu'))) random.seed(args.seed) torch.random.manual_seed(args.seed) z = make_noise(batch=5, dim=G.dim_z).cuda() dims = [2, 9] fig = make_interpolation_chart(G, deformator=deformator, z=z, shifts_r=10, shifts_count=3, dims=None, dims_count=10, texts=None, dpi=1024, direction_size=args.direction_size) fig_to_image(fig).convert("RGB").save( os.path.join(args.images_dir, 'test_{}.jpg'.format(args.seed)))
def main(): parser = argparse.ArgumentParser(description='Latent space rectification') for key, val in Params().__dict__.items(): target_type = type(val) if val is not None else int parser.add_argument('--{}'.format(key), type=target_type, default=None) parser.add_argument('--out', type=str, required=True, help='results directory') parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys(), help='generator model type') parser.add_argument('--gan_weights', type=str, default=None, help='path to generator weights') parser.add_argument('--target_class', nargs='+', type=int, default=[239], help='classes to use for conditional GANs') parser.add_argument('--deformator', type=str, default='ortho', choices=DEFORMATOR_TYPE_DICT.keys(), help='deformator type') parser.add_argument('--deformator_random_init', type=bool, default=True) parser.add_argument('--shift_predictor_size', type=int, help='reconstructor resolution') parser.add_argument('--shift_predictor', type=str, choices=['ResNet', 'LeNet'], default='ResNet', help='reconstructor type') parser.add_argument('--shift_distribution_key', type=str, choices=SHIFT_DISTRIDUTION_DICT.keys()) parser.add_argument('--seed', type=int, default=2) parser.add_argument('--device', type=int, default=0) parser.add_argument( '--multi_gpu', type=bool, default=False, help='Run generator in parallel. Be aware of old pytorch versions:\ https://github.com/pytorch/pytorch/issues/17345') # model-specific parser.add_argument( '--w_shift', type=bool, default=True, help='latent directions search in w-space for StyleGAN') args = parser.parse_args() torch.cuda.set_device(args.device) random.seed(args.seed) torch.random.manual_seed(args.seed) save_command_run_params(args) # init models if args.gan_weights is not None: weights_path = args.gan_weights else: weights_path = WEIGHTS[args.gan_type] G = load_generator(args.__dict__, weights_path, args.w_shift) deformator = LatentDeformator( shift_dim=G.dim_shift, input_dim=args.directions_count, out_dim=args.max_latent_dim, type=DEFORMATOR_TYPE_DICT[args.deformator], random_init=args.deformator_random_init).cuda() if args.shift_predictor == 'ResNet': shift_predictor = LatentShiftPredictor( G.dim_shift, args.shift_predictor_size).cuda() elif args.shift_predictor == 'LeNet': shift_predictor = LeNetShiftPredictor( G.dim_shift, 1 if args.gan_type == 'SN_MNIST' else 3).cuda() # training args.shift_distribution = SHIFT_DISTRIDUTION_DICT[ args.shift_distribution_key] params = Params(**args.__dict__) # update dims with respect to the deformator if some of params are None params.directions_count = int(deformator.input_dim) params.max_latent_dim = int(deformator.out_dim) trainer = Trainer(params, out_dir=args.out) trainer.train(G, deformator, shift_predictor, multi_gpu=args.multi_gpu) save_results_charts(G, deformator, params, trainer.log_dir)
def main(): parser = argparse.ArgumentParser(description='Latent space rectification') for key, val in Params().__dict__.items(): parser.add_argument('--{}'.format(key), type=type(val), default=None) parser.add_argument('--args', type=str, default=None, help='json with all arguments') parser.add_argument('--out', type=str, required=True) parser.add_argument('--gan_type', type=str, choices=WEIGHTS.keys()) parser.add_argument('--gan_weights', type=str, default=None) parser.add_argument('--target_class', type=int, default=239) parser.add_argument('--json', type=str) parser.add_argument('--deformator', type=str, default='ortho', choices=DEFORMATOR_TYPE_DICT.keys()) parser.add_argument('--deformator_random_init', type=bool, default=False) parser.add_argument('--shift_predictor_size', type=int) parser.add_argument('--shift_predictor', type=str, choices=['ResNet', 'LeNet'], default='ResNet') parser.add_argument('--shift_distribution_key', type=str, choices=SHIFT_DISTRIDUTION_DICT.keys()) parser.add_argument('--seed', type=int, default=2) parser.add_argument('--device', type=int, default=0) args = parser.parse_args() torch.cuda.set_device(args.device) random.seed(args.seed) torch.random.manual_seed(args.seed) if args.args is not None: with open(args.args) as args_json: args_dict = json.load(args_json) args.__dict__.update(**args_dict) # save run params if not os.path.isdir(args.out): os.makedirs(args.out) with open(os.path.join(args.out, 'args.json'), 'w') as args_file: json.dump(args.__dict__, args_file) with open(os.path.join(args.out, 'command.sh'), 'w') as command_file: command_file.write(' '.join(sys.argv)) command_file.write('\n') # init models if args.gan_weights is not None: weights_path = args.gan_weights else: weights_path = WEIGHTS[args.gan_type] if args.gan_type == 'BigGAN': G = make_big_gan(weights_path, args.target_class).eval() elif args.gan_type == 'ProgGAN': G = make_proggan(weights_path).eval() else: G = make_external(weights_path).eval() deformator = LatentDeformator( G.dim_z, type=DEFORMATOR_TYPE_DICT[args.deformator], random_init=args.deformator_random_init).cuda() if args.shift_predictor == 'ResNet': shift_predictor = ResNetShiftPredictor( G.dim_z, args.shift_predictor_size).cuda() elif args.shift_predictor == 'LeNet': shift_predictor = LeNetShiftPredictor( G.dim_z, 1 if args.gan_type == 'SN_MNIST' else 3).cuda() # training args.shift_distribution = SHIFT_DISTRIDUTION_DICT[ args.shift_distribution_key] args.deformation_loss = DEFORMATOR_LOSS_DICT[args.deformation_loss] trainer = Trainer(params=Params(**args.__dict__), out_dir=args.out, out_json=args.json) trainer.train(G, deformator, shift_predictor)