def main(): #colors_techniques = plt.cm.viridis(np.linspace(0.,1.,len(techniques))) #BuPu lines = [':', '--', '-'] n = 10 color_gradient = plt.cm.inferno(np.linspace(0,1,4)) fig, ax = lp.newfig(0.6) """ simrun1 = np.load('../sim/CM/time_sum_158_1_10.npy') simrun2 = np.load('../sim/CM/time_sum_158_1_300.npy') simrun3 = np.load('../sim/CM/time_sum_158_1_2000.npy') simrun4 = np.load('../sim/CM/time_sum_158_2_10.npy') simrun5 = np.load('../sim/CM/time_sum_158_2_300.npy') simrun6 = np.load('../sim/CM/time_sum_158_2_2000.npy') simrun7 = np.load('../sim/CM/time_sum_158_3_10.npy') simrun8 = np.load('../sim/CM/time_sum_158_3_300.npy') simrun9 = np.load('../sim/CM/time_sum_158_3_2000.npy') plt.plot(simrun1[0],simrun1[1], color=color_gradient[0], linestyle = lines[0], label = '10 secs') plt.plot(simrun2[0],simrun2[1], color = color_gradient[1], linestyle = lines[0], label = '5 mins') plt.plot(simrun3[0],simrun3[1], color = color_gradient[2], linestyle = lines[0], label = '30 mins') plt.plot(simrun4[0],simrun4[1], color = color_gradient[0], linestyle = lines[1], label = '10 secs') plt.plot(simrun5[0],simrun5[1], color = color_gradient[1], linestyle = lines[1], label = '5 mins') plt.plot(simrun6[0],simrun6[1], color = color_gradient[2], linestyle = lines[1], label = '30 mins') plt.plot(simrun7[0],simrun7[1], color = color_gradient[0], linestyle = lines[2], label = '10 secs') plt.plot(simrun8[0],simrun8[1], color = color_gradient[1], linestyle = lines[2], label = '5 mins') plt.plot(simrun9[0],simrun9[1], color = color_gradient[2], linestyle = lines[2], label = '30 mins') """ m_simrun1 = np.load('../sim/mphage_sum_10.npy') m_simrun2 = np.load('../sim/mphage_sum_60.npy') m_simrun3 = np.load('../sim/mphage_sum_300.npy') m_simrun4 = np.load('../sim/mphage_sum_1800.npy') simrun1 = np.load('../sim/time_sum_10.npy') simrun2 = np.load('../sim/time_sum_60.npy') simrun3 = np.load('../sim/time_sum_300.npy') simrun4 = np.load('../sim/time_sum_1800.npy') plt.plot(simrun1[0],simrun1[1], color=color_gradient[0], linestyle = lines[0], label = '10 sec') plt.plot(simrun2[0],simrun2[1], color=color_gradient[1], linestyle = lines[0], label = '1 min') plt.plot(simrun3[0],simrun3[1], color=color_gradient[2], linestyle = lines[0], label = '5 min') plt.plot(simrun4[0],simrun4[1], color=color_gradient[3], linestyle = lines[0], label = '30 min') plt.plot(m_simrun1[0],m_simrun1[1], color=color_gradient[0], linestyle = lines[2]) plt.plot(m_simrun2[0],m_simrun2[1], color=color_gradient[1], linestyle = lines[2]) plt.plot(m_simrun3[0],m_simrun3[1], color=color_gradient[2], linestyle = lines[2]) plt.plot(m_simrun4[0],m_simrun4[1], color=color_gradient[3], linestyle = lines[2]) plt.legend() plt.title("Total gold nanoparticles") ax.set_xlabel(r"time (seconds)") ax.set_ylabel(r"total particles in tumor") ax.minorticks_off() filename = 'sum_mphage_hopping' lp.savefig(filename) plt.close(fig) #------------------------2A---------------------- """
def main(): def read_file(infile): with open(infile) as f: lines = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line numbers = [float(line.rstrip('\n')) for line in lines] return numbers substance, period, cruise, name, N = sp.specify() input_parentdir = "/uio/hume/student-u17/sarahgj/Master/Data/VSLS_measurements/" entrained_mass = read_file(input_parentdir + "Entrained/" + "entrained_mass_%s.dat" % name) entrained_traj = read_file(input_parentdir + "Entrained/" + "entrained_traj_%s.dat" % name) released_mass = read_file(input_parentdir + "Released/" + "released_%s.dat" % name) x = range(len(entrained_mass)) micro = 1e-6 nano = 1e-9 molm = 0.14194 # Methyliodide, Molare Masse [kg/mol] entrained_mass = [x / (nano * molm) for x in entrained_mass] released_mass = [x / (micro * molm) for x in released_mass] corr = np.corrcoef(entrained_mass, released_mass) print corr #scatter plot fig = lp.newfig(1) plt.scatter(entrained_mass, released_mass) #add correlation line axes = plt.gca() m, b = np.polyfit(entrained_mass, released_mass, 1) X_plot = np.linspace(axes.get_xlim()[0], axes.get_xlim()[1], 100) plt.plot(X_plot, m * X_plot + b, '-') #title etc plt.title(cruise + ": " + substance + ", correlation %.2f" % corr[0, 1]) plt.xlabel("Entrained mass [nmol]") plt.ylabel("Released mass [$\mu$mol]") destination_folder = "/uio/hume/student-u17/sarahgj/Master/Figures/VSLS/Entrainment/" filename = destination_folder + "entrained__released_corr%s" % name plt.savefig('{}.pdf'.format(filename)) plt.savefig('{}.pgf'.format(filename)) plt.show()
def main(): astra = read_ASTRA() #[0]=latitude, [1]=longitude, [2]=SST, [3]=T print "Done reading one" m91 = data = read_M91() #[0]=latitude, [1]=longitude, [2]=SST, [3]=T print "Done reading two" fig = lp.newfig(1) m = make_map() plot_cruisetrack(astra, m, 'r') plot_cruisetrack(m91, m, 'b') destination_folder = "/uio/hume/student-u17/sarahgj/Master/Figures/DSHIP/" filename = destination_folder + "/cruisetrack" plt.savefig('{}.pgf'.format(filename)) plt.savefig('{}.pdf'.format(filename))
def main(sim, run='', time=''): if time == '': time = np.load('../sim/' + sim + '/lastTime_seconds.npy') #colors_techniques = plt.cm.viridis(np.linspace(0.,1.,len(techniques))) #BuPu lines = [':', '-', ':', '-', ':', '-', '-'] n = 10 colors_gradient = plt.cm.inferno(np.linspace(0, 1, n)) fig, ax = lp.newfig(0.6) nanoP = np.load('../sim/' + sim + '/diff_' + str(time) + 'sec' + str(run) + '.npy') nanoP = nanoP / np.max(nanoP) #in case max in not concentration #findmin = nanoP #findmin[findmin == 0.0 ] = 100.0 #mini = np.min(findmin) #nanoP = nanoP - np.full(np.shape(nanoP), mini) print(np.min(nanoP)) downsize = 1 #cax = ax.contourf(range(0,np.shape(nanoP)[0],1)[::downsize], range(0,np.shape(nanoP)[2],1)[::downsize], nanoP[np.int(np.shape(nanoP)[1]/2),::downsize,::downsize], levels=np.logspace(-3, 0, 100), locator=mpl.ticker.LogLocator(50), cmap=plt.cm.inferno) cax = ax.contourf(range(0, np.shape(nanoP)[0], 1)[::downsize], range(0, np.shape(nanoP)[1], 1)[::downsize], nanoP[::downsize, ::downsize], levels=np.logspace(-3, 0, 100), locator=mpl.ticker.LogLocator(50), cmap=plt.cm.inferno) cbar = fig.colorbar(cax, ticks=[10**0, 10**(-3), 10**(-6), 10**(-9)]) #cbar = fig.colorbar(cax, ticks=[10**0, 10**(-1), 10**(-2), minimum]) #cbar.ax.set_ylabel(r'$Concentration$') for c in ax.collections: c.set_edgecolor("face") plt.title("Normalized concentration of np") ax.set_xlabel(r"$z$-direction ($\mu m$)") ax.set_ylabel(r"$y$-direction ($\mu m$)") ax.minorticks_off() filename = sim + "_" + str(time) + str(run) lp.savefig(filename) plt.close(fig)
def make_map(title): ##Sets up a nice map for the figure, and adds a title.## #fig = plt.figure(1,figsize=(20,15)) fig, ax = lp.newfig(1) m = Basemap(projection='lcc',resolution='l',width=10000000,height=8000000,lon_0=-78.75,lat_0=-11.,urcrnrlat=2.) m.drawparallels(np.arange(int(-50.),int(50.),15),labels=[1,0,0,0], linewidth=0.0) m.drawmeridians(np.arange(int(-120.),int(0.),15),labels=[0,0,0,1], linewidth=0.0) #m = Basemap(projection='lcc',resolution='l',width=30000000,height=15000000,lon_0=-78.75,lat_0=-11.,urcrnrlat=2.) #The whole world: #m = Basemap(llcrnrlon=-180,llcrnrlat=-80,urcrnrlon=180,urcrnrlat=80,projection='mill') #m.drawparallels(np.arange(-80,81,20),labels=[1,1,0,0]) #m.drawmeridians(np.arange(0,360,60),labels=[0,0,0,1]) #m.shadedrelief() m.drawcountries(linewidth=1.2, linestyle='solid', color='k', antialiased=1, ax=None, zorder=None) m.drawcoastlines() #m.drawrivers(linewidth=0.2, linestyle='solid', color='b', antialiased=1, ax=None, zorder=None) #m.drawgreatcircle(lon1=0, lat1=0, lon2=-150, lat2=0, del_s=100.0, linewidth=1.5, color='r') m.drawmapboundary(fill_color='white') plt.title(title) return m, fig
] # Conversion to days # brom_mean = [] dibrom_mean = [] for i in range(0, 21): dibromomethane[i] = dibromomethane[i] / (24 * 60 * 60) bromoform[i] = bromoform[i] / (24 * 60 * 60) print(np.mean(dibromomethane), np.mean(bromoform)) # Making a hight list hight = range(0, 21) ## PLOTTING ## lp.newfig(0.8) host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() #host.set_title("Lifetime Profiles", size=20) host.set_xlabel("Height") host.set_ylabel("Bromoform [days]") par1.set_ylabel("Dibromomethane [days]") p1, = host.plot(hight, bromoform, "k") p2, = par1.plot(hight, dibromomethane, "b") host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color())
def main(): def read_file(infile): with open(infile) as f: lines = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line numbers = [float(line.rstrip('\n')) for line in lines] return numbers substance, period, cruise, name, N = sp.specify() # reading information in to lists input_parentdir = "/uio/hume/student-u17/sarahgj/Master/Data/VSLS_measurements/Fluxes/" flux = read_file(input_parentdir + "fluxes_%s.dat" % name) lat = read_file(input_parentdir + "all_lats_%s.dat" % name) # arranging lists according to lat lat_arr = [ x for (x, y) in sorted(zip(lat, flux), key=lambda pair: pair[0]) ] flux_arr = [ y for (x, y) in sorted(zip(lat, flux), key=lambda pair: pair[0]) ] # reading dates to list with open(input_parentdir + "all_dates_%s.dat" % name, 'r') as myfile: dates_string = myfile.readlines() dates_string = [x.strip() for x in dates_string] datetimes = [] for x in dates_string: datetimes.append(datetime.datetime.strptime(x, '%Y%m%dT%H%M%S')) dates = mpl.dates.date2num(datetimes) # make date figure fig, host = lp.newfig(1) host.plot(dates, flux) plt.axhspan(min(flux), 0, facecolor='r', alpha=0.3) host.set_ylim(min(flux), max(flux) * (1 + 0.1)) host.set_title(cruise + ": " + substance) host.set_xlabel("Cruise") host.set_ylabel("Flux [pmol/(m**{2*}hr)]") daymonthFmt = mdates.DateFormatter('%d/%m') host.xaxis.set_major_formatter(daymonthFmt) # save date figure destination_folder = "/uio/hume/student-u17/sarahgj/Master/Figures/VSLS/Fluxes/" filename = destination_folder + "date_fluxes_%s" % name plt.savefig('{}.pdf'.format(filename)) plt.savefig('{}.pgf'.format(filename)) # make lat figure fig, host = lp.newfig(1) host.plot(lat_arr, flux_arr, 'b') plt.axhspan(min(flux_arr), 0, facecolor='r', alpha=0.3) host.set_ylim(min(flux_arr), max(flux_arr) * (1 + 0.1)) host.set_title(cruise + ": " + substance) host.set_xlabel("Latitude") host.set_ylabel("Flux [pmol/(m$^{2*}$hr)]") # save lat figure destination_folder = "/uio/hume/student-u17/sarahgj/Master/Figures/VSLS/Fluxes/" filename = destination_folder + "lat_fluxes_%s" % name plt.savefig('{}.pdf'.format(filename)) plt.savefig('{}.pgf'.format(filename)) plt.show()
#============================FP QSD============================= FPQSD_mean, FPQSD_var = comp.mean_var(ss.pdfFP_full_normalized, stochasticity, variability, capacity) np.save("../data/heat_FPQSD_mean.npy", FPQSD_mean) np.save("../data/heat_FPQSD_var.npy", FPQSD_var) FPQSD_mean = np.load("../data/heat_FPQSD_mean.npy") FPQSD_var = np.load("../data/heat_FPQSD_var.npy") #FPQSD_var[FPQSD_var < 0.0] = 0.01 #Funky stuff happens, sometimes it's negative??? #FPQSD_mean[FPQSD_mean < 0.0] = 0.01 #------------------------------ A ------------------------------ fig, ax = lp.newfig(0.6) cax = ax.contourf( stochasticity, variability, np.asarray(FPQSD_mean / exact_mean), 100, cmap=plt.cm.inferno ) #, norm=LogNorm(), levels=np.logspace(minimum, maximum, maximum)) cbar = fig.colorbar(cax, ticks=[ np.min(FPQSD_mean / exact_mean), 1.0, np.max(FPQSD_mean / exact_mean) ]) #Should we useplt.cm.RdBu for c in ax.collections: c.set_edgecolor("face")
##############################################################################